

FINAL REPORT

EVALUATION OF SKIN SENSITIZATION POTENCY OF C6OLF BASED ON EC3 VALUE DERIVED FROM LOCAL LYMPH NODE ASSAY (LLNA)

March, 2017

Chemicals Assessment and Research Center Chemicals Evaluation and Research Institute, Japan

Study Code:

937-16-V-0522

TITLE

Evaluation of skin sensitization potency of C6OLF based on EC3 value derived from local lymph node assay (LLNA)

SPONSOR

DAIKIN INDUSTRIES, LTD.

1-1 Nishi Hitotsuya, Settsu-shi, Osaka 566-8585, Japan.

TESTING FACILITY

Chemicals Assessment and Research Center

Chemicals Evaluation and Research Institute (CERI), Japan

1600 Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043, Japan

PURPOSE OF STUDY

The purpose of this study was to evaluate the skin sensitization potential of the test chemicals.

METHOD OF STUDY

This study was conducted in accordance with the OECD TG429, then EC3 value was calculated and skin sensitization potency of test chemical was estimated by the criterion of Kimber, I.et al (2003).

PERIOD OF STUDY

Commencement of Study: February 8, 2017

Animal Receipt: January 12, 2017

Commencement of Pre-screen test: February 1, 2017

Sensitization period: February 8 - 10, 2017

Administration of ³H-methyl thymidine: February 13, 2017

Collection of lymph nodes: February 13, 2017

Measurement of ³H-methyl thymidine incorporation: February 14, 2017

Completion of Study: March 1, 2017

NAMES, ASSIGNED SECTIONS AND JOB ASSIGNMENT OF STUDY DIRECTOR AND PERSONNEL

Study Director:

Chemicals Assessment and Research Center

Study Staff

Chemicals Assessment and Research Center

Certified radiation protection supervisor

Chemicals Assessment and Research Center

Experimental Animal Manager

Chemicals Assessment and Research Center

SUMMARY

Skin sensitization potential of C6OLF was evaluated by Local Lymph Node Assay (LLNA). Study was conducted in accordance with the OECD TG429. Test solutions, 25%, 50%, and 99.95 % of C6OLF was applied to the dorsum of both ears of female CBA/J mice in 11 weeks of age daily for three consecutive days, then ³H-methyl thymidine was injected into all mice via the tail vein and incorporation of ³H-methyl thymidine into auricular lymph node cells was measured. Stimulation Indices (SI) of all dose of C6OLF did not exceeded 3, this chemical was evaluated as negative in LLNA.

While, the known human contact allergens, α -Hexylcinnamaldehyde (HCA) used as positive control showed clear positive response with SI value of 22.0 (SI >3). Therefore it confirms the validity of this study.

MATERIALS AND METHODS

1 TEST SUBSTANCES AND VEHICLE

- 1.1 Test substance
 - 1) Test substance name

3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooct-1-ene

Synonym

C6OLF

2) CAS No.

25291-17-2

3) Supplier

DAIKIN INDUSTRIES, LTD.

4) Lot No.

C2160215

5) Purity

99.95 %

6) Appearance in normal temperature

Clear liquid

7) Storage Condition

Test substance was stored at room temperature.

8) Handling precautions

Gloves, a mask, a head cap and a lab coat were worn when handling.

1.2 Positive control substance

1) Chemical name

α-Hexylcinnamaldehyde (HCA)

CAS No. 101-86-0

2) Lot No.

SAF6701

3) Manufacturer

Wako Pure Chemicals Co.

4) Purity

97.8%

5) Storage condition

Test substance was stored in room temperature.

6) Handling precautions

Gloves, a mask, a head cap and a lab coat were worn when handling.

1.3 Vehicle

Methylethylketone (MEK) was selected as a vehicle.

2 ANIMALS

2.1 Animal species

Female CBA/J mice, SPF (Charles River Japan, Inc)

2.2 Selection of animal species

CBA/J is a recommended mouse strain of OECD TG429. Additionally, it is confirmed as a high-sensitive strain in LLNA.

2.3 Age in weeks of animals at the start of the study

7 week-old

2.4 Age in weeks and body weights ranged of animals at applying of test substance

11 week-old, within ±20% of mean body weight

2.5 Procedure and period of quarantine and acclimation

Healthy animals in good general condition confirmed by a person in charge of animal management on arrival were quarantined 13 days. During the quarantine and acclimation period, clinical signs, body weights and excrement of the animals were monitored.

2.6 Grouping

Animals confirmed to be in good health with favorable body weight gains by a person in charge of animal management during the quarantine and acclimation period, were allocated to groups by random selection on the day before the start of applying test substance.

2.7 Identification

1) Animal

Animals were identified by marking the tail with colored marker.

2) Cage

Cages were identified by labels (Study code, Cage No., Animal No., Study Director, Study staff, species, strain, gender, sensitization period and test group).

3 HOUSING CONDITIONS

3.1 Housing condition

1) Animal room

Quarantine and acclimatization period

Air and humidity conditioned isolator (TAR-70MK6, Toyoriko Co Ltd) placed in the Animal room (#4107), CERI-Tokyo

Sensitization period

Air and humidity conditioned isolator (TAR-70MK6, Toyoriko Co Ltd) placed in the Animal room (#4107), CERI-Tokyo

2) Temperature

23°C (Actual temperature range was 21.0-24.0 °C.)

3) Relative humidity

55% (Actual relative humidity range was 50.0-68.0 %)

4) Air ventilation

50 cycles/h

5) Light-dark cycle

The rooms were artificially lighted for 12 h daily (7:00-19:00) and dark 12h (19:00-7:00)

6) Cage

Before grouping animals

Polycarbonate cage (280W×440D×205H mm)

After grouping animals

Polycarbonate cage (215W×320D×150H mm)

7) Density of animals in the Cage

Before grouping animals

Equal to or less than 10 animals per cage

After grouping animals

4 animals per cage

8) Frequency of changing equipments

On the day of grouping animals and after grouping animals, cage, fir chip and water bottle were changed once a week.

3.2 Food

1) Form

Pelleted diet (MF, ORIENTAL YEAST CO LTD)

2) Feeding

Free access via feeders

3) Lot No.

160419 A3

3.3 Water

1) Form

Water (chlorinated) from Sugito machi

2) Water supplying

Free access via water bottles

3.4 Fir chip

1) Form

White-Flakes (spruce wood chip, shaving by power planer)

2) Manufacturer

Charles River Japan, Inc

3) Lot No.

16.03.25

TEST METHOD

1 PRE-SCREEN TEST

1.1 Objective

Pre-screen test was performed in order to select the applicable maximum dose level in the main LLNA study, where the test substance induces neither excessive irritation nor systemic toxicity.

1.2 Grouping for pre-screen test

Group	Dose	Volume (μL/ear)	No. of application	N
	10 %	25		2
	25 %	25	once a day	2
C6OLF	50 %	25	×3days	2
	99.95 %	25		2

1.3 Preparations

1) Vehicle

MEK was used as a vehicle.

2) Time of preparation

Test solutions were stored in dark place until use.

1.4 Sensitization

1) Sensitization procedure

A $25\mu L$ of test solutions were applied to the dorsum of both ears of the mice using micro volume pipette.

2) Frequency of sensitization

Once a day for three days.

1.5 Observations and examination

1) General Condition

Clinical signs were observed at least once a day. Erythema scores of auricles were recorded individually according to the Scoring criteria of OECD TG429 adopted 2010.

Erythema Scores (OECD TG429, 2010)

Observation	Score		
No erythema	0		
Very slight erythema (barely perceptible)	1		
Well-defined erythema			
Moderate to severe erythema	3		
Severe erythema (beet redness) to eschar formation preventing grading of erythema	4		

2) Body Weights

Body weights were measured on the day of the first application (Day 1) and the day of final observation (Day 6).

3) Measurement of ear thickness

Ear thickness was measured in triplicate for each ear with the Digital micrometer (MDC-25MJ, Mitsutoyo) before application (Day 1), 48h after application (Day 3) and on the day of final observation (Day 6). The mean ear thickness was noted.

1.6 Dose selection

Dose elicits severe systemic toxicity, erythema excess score 3 or more than 25% increase of ear thickness compared with the data obtained before application would be excluded for test doses.

2 MAIN STUDY

2.1 Grouping

G	D *	Volume	4 11	0		1	1		
Group	Dose*	(μL/ear)	Application	fen	nale	(Aı	im	al No	.)
Vehicle treated control (MEK)		25		4	(1	5 24	4)
	25 %	25		4	(5	=	8)
C6OLF	50 %	25	once per day	4	(9	-	12)
₂₀ - 90	99.95 %	25	×3days	4	(13	-	16)
Positive control (HCA in MEK)	25%	25	e 9	4	(17	9 ;=	20)

^{*} Doses for test substance were decided according to the pre-screen test result.

2.2 Preparations

1) Vehicle

MEK was used as a vehicle.

2) Positive control substance

HCA (0.26 g) was accurately weighed and dissolved in MEK to 1 mL (25 w/v%) and stored by glass bottle.

3) Test substance

C6OLF (0.5g) was accurately weighed and dissolved in MEK to 1 mL (50 w/v%). Additionally, 50 w/v% solution was diluted by MEK to prepare lower dose solutions (25 w/v%).

4) ³H-methyl thymidine

 3 H-methyl thymidine (Moravek Biochemicals, Inc., 1 mCi/mL) was mixed with Phosphate-buffer saline (PBS) to make a 80 μ Ci/mL solution.

5) Time of preparation

All test solutions were prepared before sensitization and stored by shading glass bottle in a dark place. ³H-methyl thymidine was prepared on the day of injection.

2.3 Sensitization

1) Sensitization procedure

A $25\mu L$ of test solutions were applied to the dorsum of both ears of the mice using micro volume pipette.

2) Time and frequency of sensitization Once a day for three days.

2.4 ³H-methyl thymidine injection

- Administration route and method
 A 0.25mL solution per mouse was injected using 29G Insulin Syringe (ss-05M2913, TERUMO CO. LTD.) via tail vein.
- Time and frequency of injection
 Once at 3 days after the final sensitization.

2.5 Observations and test

- General Condition
 Clinical signs were observed at least once a day.
- 2) Body Weights

Body weights were measured on the day of the first sensitization and the day of collection of lymph nodes.

- 3) Collection of lymph nodes and measurement of lymph node weight
 Approximately 5h after administration of ³H-methyl thymidine, the auricular lymph
 nodes were removed after euthanasia. The auricular lymph nodes were carefully dissected
 and trimmed of fascia and fat, and then weighed both sides of lymph nodes together.
- 4) Counting of incorporation of ³H-methyl thymidine into auricular lymph nodes

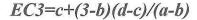
 The single-cell suspension of lymph node cell (LNC) was prepared in PBS by either
 gentle mechanical separation through 200-mesh stainless steel mesh for generating a
 single-cell suspension. LNC were washed twice with an excess of PBS. Then, added 5%
 Trichloroacetic acid (TCA), then kept at 4°C for 18 hours. After 18 hours, pellets were
 resuspended in 1 mL TCA and transferred to 10 mL of scintilant (EcolumeTM, MP
 Biomedicals), and incorporation of ³H-methyl thymidine (DPM / mouse) was measured
 by liquid scintillation counter (Tri-Carb 3110TR, PerkinElmer).

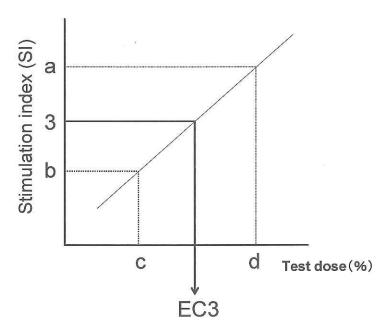
2.6 Euthanasia

The animals used in this study were euthanized by cervical dislocation.

2.7 Handling of dead animal

No fatal cases of animals in this study.


2.8 Evaluation of the results


The mean incorporation of 3 H-methyl thymidine (DPM/ mouse) was calculated for the vehicle treated control group. Then, each value of incorporation of 3 H-methyl thymidine in all mice was divided by the mean DPM of the vehicle treated control group to calculate stimulation index (SI). SI of vehicle treated control and test substance group were expressed as means and standard errors. The decision process regards a result as positive when SI of test substance group ≥ 3 .

 $SI = \frac{Incorporation of ^3H\text{-methyl thymidine of each animal}}{Mean incorporation of ^3H\text{-methyl thymidine of vehicle treated control}}$

2.9 Calculation of EC3

EC3 value of test substance was calculated by the following equation, and the skin sensitization potency of test chemical was estimated by the criterion of Kimber I. et al (2003). EC3 value was not able to calculate because SI of all dose of C6OLF did not exceed 3.

The formula utilized the data points lying immediately above and below the SI value of 3 on the LLNA dose response curve containing the (SI, Test dose) coordinates (a, d) and (b, c), respectively.

Categorisation of contact allergens on the basis of relative skin sensitisation potency*

Category	EC3 (%)
Extreme	<0.1
Strong	≥0.1 to <1
Moderate	≥1 to <10
Weak	≥10 to ≤100

^{*}Kimber I. et al., (2003)

UNFORESEEN EVENTS THAT MAY HAVE AFFECTED THE RELIABILITY OF THE STUDY

No unforeseen events that might have affected the reliability of the study.

RESULTS

1 PRE-SCREEN TEST

1.1 General condition (Table 1)

No animals showed any abnormalities during prescreen test period.

1.2 Irritation (Table 1, Table 2)

No animals showed irritant reaction during prescreen test period.

1.3 Dose selection

The maximum dose level (99.95 %) was decided as the maximum concentration which was applicable to ear of mice without any serious toxic effects (systemic toxicity and/or severe local skin irritation), then lower 2 doses (50 % and 25 %) were added with serial dilution.

2 MAIN STUDY

2.1 General condition (Table 3)

No animals showed any abnormalities during test period.

2.2 Body weight (Table 3, Addendum 1)

No animals showed any abnormalities with regard to body weight change.

2.3 Lymph node weight (Table 4, Addendum 2, Figure 1)

2.3.1 Vehicle treated control group

The mean lymph node weight of vehicle treated control group with MEK was calculated as 4.1±0.3 mg, respectively.

2.3.2 Test substance group

The mean lymph node weight of 25 %, 50 % and 99.95 % test groups were calculated as 3.4 ± 0.3 mg, 3.9 ± 0.2 mg and 2.9 ± 0.2 mg, respectively.

2.3.3 Positive control group

The mean lymph node weight was calculated as 9.6±0.4 mg.

2.4 Stimulation Index (SI) (Table 4, Addendum 3, Figure 2)

2.4.1 Vehicle treated control group

The mean SI of vehicle treated control group with MEK was calculated as 1.0 ± 0.1 .

2.4.2 Test substance group

The mean SI of 25 %, 50 % and 99.95 % test groups were calculated as 1.3 ± 0.2 , 1.3 ± 0.1 and 1.1 ± 0.1 , respectively.

2.4.3 Positive control group

The mean SI was calculated as 22.0±2.2.

DISCUSSION

Skin sensitization potential of C6OLF was evaluated by Local Lymph Node Assay (LLNA). Study was conducted in accordance with the OECD TG429. Test solutions, 25%, 50%, and 99.95 % of C6OLF was applied to the dorsum of both ears of female CBA/J mice in 11 weeks of age daily for three consecutive days, then ³H-methyl thymidine was injected into all mice via the tail vein and incorporation of ³H-methyl thymidine into auricular lymph node cells was measured. Stimulation Indices (SI) of all dose of C6OLF did not exceeded 3, this chemical was evaluated as negative in LLNA.

While, the known human contact allergens, α -Hexylcinnamaldehyde (HCA) used as positive control showed clear positive response with SI value of 22.0 (SI >3). Therefore it confirms the validity of this study.

REFERENCES

Kimber, I., Dearman, R.J., Scholes, E.W., Basketter, D.A. (1994). The local lymph node assay: developments and applications, Toxicology, 93, 13-31.

Organization for Economic Corporation and Development (OECD, 2010). Skin Sensitisation: Local Lymph Node Assay, TG-429 (Adopted: 22nd July 2010).

Kimber I., Basketter D. A., Butler M., Gamer A., Gerberick G. F., Newsome C., Steiling W., and Vohr H.-W., (2003) Classification of contact allergens according to potency: proposals. Food and Chemical Toxicology, 41: 1799 – 1809.

Table 1 Body weights and general condition (Pre-screen test)

				Body we	Body weights (g)	6	incial comme	Desthone Com
Group	% tested	Z	day 1	I	day 6	9.	Cultivat signs	Layurenia Scores
			Mean	SE	Mean	SE	day 1 - 6	day 1 - 6
	10%	2	22.2	1.96	21.9	0.72	NAD	0
1070	25%	2	23.1	2.34	23.8	1.03	NAD	0
COOFIL	20%	2	24.5	0.24	23.5	0.57	NAD	0
	%56.66	2	22.8	1.97	23.1	2.14	NAD	0

N: number of animals

SE: standard error

NAD: no abnormalities detected during Observation period.

Table 2 Ear thickness (Pre-screen test)

						_	Ear thickness (µm)	(un				
Group	% tested	Z	day	y 1		day 3	, 3			day	day 6	
	×		Mean (L)	Mean (R)	Mea	Mean (L)	Mea	Mean (R)	Меа	Mean (L)	Mea	Mean (R)
	10%	2	7.622	229.8	238.3	103.8%	239.8	104.4%	240.5	104.7%	244.3	106.3%
1000	25%	2	234.7	229.2	243.2	103.6%	243.2	106.1%	245.2	104.5%	244.3	106.6%
COOLF	50%	2	231.3	230.3	242.3	104.8%	251.2	109.0%	247.5	107.0%	247.2	107.3%
	99.95%	2	225.2	232.8	245.7	109.1%	249.0	106.9%	249.7	110.9%	255.3	109.7%

N: number of animals

L: left car, R: right car

Table 3 Body weights and general condition

	clinical signs	day 1 - 6	C. A. I.A.	INAD	NAD	NAD	NAD	CLAIN	OWN
	9	SE	ć	0.3		0.7	9.0	ć	7:0
ights (g)	day 6	Mean	ć	7.67	24.1	23.5	22.6	C	6.77
Body we	Body weights (g) day 1		-	4.0	9.0	0.7		0	†
			2	74.1	23.8	23.6	23.2	,	7. C7
	Z		-	4	4	4	4	~	t
	% tested			Ť	25 %	20 %	99.95 %	76.50	0/ 67
	Group		Vehicle treated control	(MEK)		C6OLF	S.	Positive control	(HCA in MEK)

N: number of animals

SE: standard error

MEK: Methylethylketone

HCA: α -Hexylcinnamaldehyde

NAD: no abnormalities detected during Observation period.

Table 4 Summary of the results in standard local lymph node assay

Ç		-	Lymph node	ymph node weight (mg)	DPM	V	Stimulation index (SI)	index (SI)	7,6/201
Group	% lested	z ,	Mean	SE	Mean	SE	Mean	SE	EC3(70)
Vehicle treated control		7	7	Ç	307	4	0	-	
(MEK)	ı	4	4.	0.0	C74	†	1.0	0.1	ı
	25 %	4	3.4	0.3	535	70	1.3	0.2	
47090	% 05	4	3.9	0.2	535	61	1.3	0.1	1
	% 56.66	4	2.9	0.2	465	26	ij	0.1	
Positive control	76.07	_	90	~	0261	040	0 00	c	
(HCA in MEK)	0/ 77	t	7.0	t. 0	7301	0+6	0.77	7:7	i

N: number of animals

SE: standard error

DPM: Disintegration per minute

MEK: Methylethylketone

HCA: a-Hexylcinnamaldehyde

Addendum 1 Body weights of individual animals (g)

Carrie		Animal _	day 1	day 6
Group		No.	BW (g)	BW (g)
		1	23.45	23.96
Vehicle treated control		2	24.15	23.03
(MEK)	=	3	25.25	23.44
		4	23.39	22.43
		5	22.75	23.33
	25 %	6	24.38	24.49
- 4	23 %	7	25.03	25.33
		8	22.84	23.39
C6OLF	50 %	9	22.22	21.85
		10	25.25	24.43
	30 %	11	22.88	22.82
	0	12	24.01	25.09
		13	23.96	22.10
	00.05.07	14	23.93	23.68
	99.95 %	15	21.59	21.02
		16	23.12	23.44
		17	22.78	22.88
Positive control	25.0/	18	23.03	22.51
(HCA in MEK)	25 %	19	22.53	22.67
		20	24.51	23.52

MEK: Methylethylketone

HCA: α-Hexylcinnamaldehyde

Addendum 2	Lymph node weights of individual animals (mg)

	- 1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
0		Animal	Lymph node weight				
Group		No.	(mg)				
		1	5.1				
Vehicle treated control		2 3.9 3 3.8 4 3.6 5 3.2 6 3.0 7 4.4					
(MEK)	-	No. (mg) 1 5.1 2 3.9 3 3.8 4 3.6 5 3.2 6 3.0					
		No. (mg) 1					
		5	3.2				
	25.0/	6	3.0				
	25 %	7	4.4				
	8	8	3.0				
C6OLF		9	3.7				
	50.0/	10 3.8					
	50 %	11	(mg) 5.1 3.9 3.8 3.6 3.2 3.0 4.4 3.0 3.7 3.8 3.5 4.6 3.1 3.0 2.4 3.0 9.7 9.2 8.7				
	<u>v</u>	No. (mg) 1 5.1 2 3.9 3 3.8 4 3.6 5 3.2 6 3.0 7 4.4 8 3.0 9 3.7 10 3.8 11 3.5 12 4.6 13 3.1 14 3.0 15 2.4 16 3.0 17 9.7 18 9.2 19 8.7					
		13	3.1				
	00.05.0/	14	3.0				
	99.95 %	15	3.1 3.0 2.4				
		16	3.0				
		17	9.7				
Positive control	25.07	13 3.1 14 3.0 15 2.4 16 3.0 17 9.7 18 9.2 19 8.7					
(HCA in MEK)	25 %	19	8.7				
		20	10.6				

MEK: Methylethylketone

HCA: α -Hexylcinnamaldehyde

Addendum 3

DPM and SI values of individual animals

0		Animal	DDM	Stimulation index
Group		No.	DPM	(SI)
		1	450	1.1
Vehicle treated control		2	526	1.2
(MEK)	-	3	317	0.7
		4	408	1.0
		5	438	1.0
	25.07	6	588	1.4
	25 %	7	708	1.7
	*	8	409	1.0
C6OLF		9	601	1.4
	50.0/	10	553	1.3
	50 %	11	358	0.8
	Φ	12	631	1.5
	00.05.0/	13	458	1.1
		14	466	1.1
	99.95 %	15	407	1.0
		16	532	1.3
		17	10196	24.0
Positive control	25.07	18	7421	17.5
(HCA in MEK)	25 %	19	8251	19.4
	64 SC	20	11576	27.3

DPM: Disintegration per minute

MEK: Methylethylketone

HCA: α -Hexylcinnamaldehyde

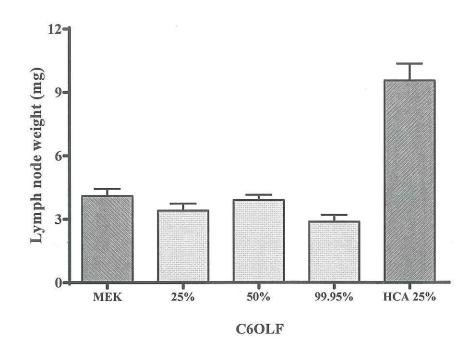


Figure 1 Lymph node weights in the local lymph node assay

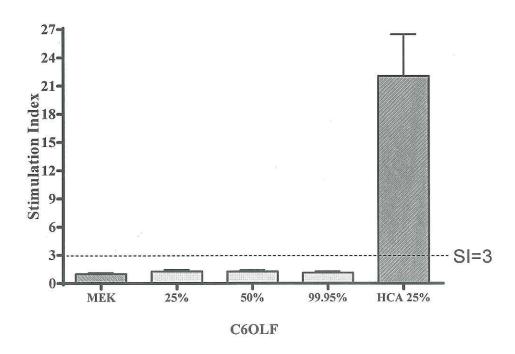


Figure 2 Stimulation indices in the local lymph node assay

Authorized signature of this final report

March 1, 2017
Date

Chemicals Assessment and Research Center Chemicals Evaluation and Research Institute, Japan