

FINAL REPORT

Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) in Mice

Author

, Ph.D., DABT, Fellow ATS (Study Director)

Study Completed On

Final Report 26 July 2011

Sponsor

Daikin Industries, LTD
Chemical Division
Umeda Center Building
4-12 Nakazaki-Nishi, 2-chrome
Kita-ku, Osaka 530-8323
JAPAN

Performing Laboratory

Charles River Laboratories
Preclinical Services
905 Sheehy Drive, Building A
Horsham, PA 19044
USA

Subcontractor Facility

Charles River Laboratories
Preclinical Services
22022 Transcanadienne Senneville
Montreal, Quebec H9X 3R3
CANADA

Charles River Laboratories Preclinical Services Protocol Number: 20005045

1. STATEMENT OF NO DATA CONFIDENTIALITY CLAIMS

No claim of confidentially is made for any information contained in this study on the basis of its falling within the scope of FIFRA Section 10(d) (1)(A), (B), or (C).

This statement supersedes any other claims of confidentiality found in this report.

Company:
Company Agent:
Title:
Date:
G'

2. GOOD LABORATORY PRACTICE STATEMENT

This final report accurately reflects the raw data obtained during the performance of the study. No deviations from the Good Laboratory Practice (GLP) regulations of the U.S. Environmental Protection Agency ^a, the Japanese Ministry of Agriculture, Forestry and Fisheries ^b, and the Organisation for Economic Co-operation and Development ^c occurred that affected the quality or integrity of the study, with the following exceptions.

- All reports generated by Charles River Laboratories Preclinical Services Montreal were conducted in accordance with the appropriate OECD Principles of GLP.
 The OECD regulations were appropriate for these analyses.
- Health monitoring analysis conducted by Zoologix Inc., for clostridium
 perfringens was conducted non-GLP. The non-GLP conduct of this portion was
 appropriate for health monitoring.

Submitter:	
	Date
Sponsor:	
***************************************	Date
	· · · · · · · · · · · · · · · · · · ·
	ruran
	Date

Study Director

Executive Director, Site Operations and Toxicology

U.S. Environmental Protection Agency. Federal Insecticide, Fungicide and Rodenticide Act (FIFRA); Good Laboratory Practice Standards; Final Rule. 40 CFR Part 160.

Japanese Ministry of Agriculture, Forestry and Fisheries (1999). Notification on the Good Laboratory Practice (GLP) Standards for Agricultural Chemicals. 11 Nousan No. 6283.

c. Organisation for Economic Co-operation and Development (1998). The Revised OECD Principles of Good Laboratory Practice [C(97)186/Final].

3. FLAGGING STATEMENT

I have applied the criteria of 40 CFR 158.34 for flagging studies for potential adverse effects to the results of the attached study. This study neither meets nor exceeds any of the applicable criteria.

Company:
Company Agent:
Title:
Date:
Si amatuma.

4. QUALITY ASSURANCE STATEMENT

QUALITY ASSURANCE STATEMENT

This study has been inspected by the QAU to assure conformance with the GLP regulations US Environmental Protection Agency, Good Laboratory Practice Regulations, Final Rule, 40 CFR Part 160/792; Organisation for Economic Co-operation and Development (1998), The Revised OECD Principles of Good Laboratory Practices [C(97)186/Final]; and Japanese Ministry of Agriculture, Forestry and Fisheries (2003), Good Laboratory Practice Standards for Agricultural Chemicals. Reports were submitted in accordance with SOPs as follows.

QAU INSPECTION DATES

		Dates Findings	Dates Findings Submitted to:	
			Study Director	
Dates of Inspection	Phase(s) Inspected	Study Director	Management	
15 Sep 2010	Protocol	15 Sep 2010	15 Sep 2010	
01 Dec 2010	Amendment 1	01 Dec 2010	01 Dec 2010	
13 Jun 2011	Amendment 2	13 Jun 2011	13 Jun 2011	
04 Oct 2010	Test Substance Preparation	04 Oct 2010	04 Oct 2010	
08 Oct 2010	Test Substance Administration	11 Oct 2010	11 Oct 2010	
10 Nov 2010	Dam/Litter Euthanasia	11 Nov 2010	11 Nov 2010	
02 Dec 2010	F1 Necropsy	02 Dec 2010	02 Dec 2010	
22-24 Dec 2010 28 Feb 2011	In-life Data	24 Dec 2010 28 Feb 2011	24 Dec 2010 28 Feb 2011	
23-24 Dec 2010 31 Jan 2011	Necropsy Data	24 Dec 2010 31 Jan 2011	24 Dec 2010 31 Jan 2011	
24 Dec 2010	Formulations Data	24 Dec 2010	24 Dec 2010	
28 Feb 2011, 01 Mar 2011 18 Mar 2011	Tables	01 Mar 2011 18 Mar 2011	01 Mar 2011 18 Mar 2011	

Dates Findings Submitted to:

Study Director

Dates of Inspection	Phase(s) Inspected	Study Director	Management
02, 04 Mar 2011	Methods	04 Mar 2011	04 Mar 2011
14 Mar 2011	Results	14 Mar 2011	14 Mar 2011
17 Mar 2011	Summary	17 Mar 2011	17 Mar 2011
23 May 2011	Revised Report	23 May 2011	23 May 2011
20 Jul 2011	Final Report	20 Jul 2011	20 Jul 2011

QA statements were provided by the following Test Sites and were reviewed:

Test Site(s)	Phase	QA Statement Location
Charles River Laboratories, Preclinical Services, Montreal	Test Substance Analysis	Appendix 4
Charles River Laboratories, Preclinical Services, Montreal	Bioanalysis	Appendix 5

The Final Report has been reviewed to assure that it accurately describes the materials and methods, and that the reported results accurately reflect the raw data.

 26JU2011	
Date	

Quality Assurance Auditor Charles River Laboratories Preclinical Services, Pennsylvania

TABLE OF CONTENTS

1. STATEMENT OF NO DATA CONFIDENTIALITY CLA	AMS 2
2. GLP COMPLIANCE STATEMENT	3
3. FLAGGING STATEMENT	4
4. QUALITY ASSURANCE STATEMENT	5
5. SUMMARY AND CONCLUSION	
5.1. Purpose	
5.2. Methods	15
5.3. Results	16
5.3.1. Pharmacokinetic Analysis	18
5.3.2. Postweaning Period	
6. DISCUSSION AND CONCLUSION	
7. DESCRIPTION OF TEST PROCEDURES	
7.1. Conduct of Study	
7.1.1. Sponsor	
7.1.2. Testing Facility	
7.1.3. Study Number	
7.1.4. Purpose of the Study	
7.1.5. Study Design	
7.1.6. Ownership of the Study	
7.1.7. Study Monitor	
7.1.8. Study Director	
7.1.9. Technical Performance	
7.1.9.1. Charles River Laboratories Preclinical Servic	· ·
Pennsylvania, USA	
7.1.9.2. Charles River Laboratories Preclinical Servic	
Montreal, CANADA	
7.1.10. Report Preparation	
7.1.11. Report Review	
7.1.12. Date Protocol Signed	
7.1.13. Dates of Technical Performance	
7.1.13.1. F0 Generation Mice	
7.1.13.2. F1 Generation Mice	
7.1.14. Records Maintained	
7.2. Test Substance and Vehicle Information	
7.2.1. Special Handling Instructions	
7.2.2. Analysis of Activity/Purity	
7.2.3. Test Substance and Vehicle Preparation and Stora	
7.2.4. Analytical Results	
- · · · · · · · · · · · · · · · · · · ·	
ı	
7.3.2. Supplier (Source)	
7.3.4. Rationale for Test System	
7.3.7. Randhaic for rest by stelli	∠U

7.3.5. Test System Data	2ϵ
7.3.6. Method of Randomization	26
7.3.6.1. F0 Generation Mice	2 <i>6</i>
7.3.6.2. F1 Generation Pups/Mice	26
7.3.7. System of Identification	
7.3.7.1. F0 Generation Mice	
7.3.7.2. F1 Generation Pups/Mice	
7.4. Husbandry	
7.4.1. Research Facility Registration	
7.4.2. Veterinary Treatment	
7.4.3. Study Room	
7.4.4. Housing	
7.4.4.1. F0 Generation Mice	
7.4.4.2. F1 Generation Mice	
7.4.5. Light	
7.4.6. Sanitization	
7.4.7. Feed	
7.4.8. Feed Analysis	
7.4.9. Water	
7.4.10. Water Analysis	
7.4.11. Bedding Material	
7.4.12. Bedding Analysis	
7.4.13. Day Numbering System	
7.5. Methods	
7.5.1. Dosage Administration	
7.5.1.1. F0 Generation Mice	
7.5.1.2. F1 Generation Mice	
7.5.2. Rationale for Dosage Selection	
7.5.3. Route and Rationale for Route of Administration	
7.5.4. Method and Frequency of Administration	
7.5.4.1. F0 Generation Mice	
7.5.4.2. F1 Generation Pups	
7.5.5. Method of Study Performance	
7.5.5.1. F0 Generation Mice	
7.5.5.2. F1 Generation Pups	
7.5.5.3. F1 Generation Mice	
7.5.6. Gross Necropsy	
7.5.6.1. F0 Generation Mice	
7.5.6.2. F1 Generation Pups	
7.5.6.3. F1 Generation Mice	
7.5.7. Data Collection and Statistical Analyses	
8. RESULTS - F0 GENERATION FEMALE MICE	
8.1. Mortality and Clinical Observations	
8.2. Body Weight and Body Weight Changes	
8.2. Body Weight and Body Weight Changes	40 40

	8.4.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to	1
		Terminal Body Weight	41
	8.5.	Necropsy Observations	41
	8.6.	Clinical (including Eye Opening) and Necropsy Observations -	
		F1 Generation Pups	42
	8.7.	Levels of PFH in Liver Homogenates	
9.	. R	ESULTS - F1 GENERATION MICE - PostWeaning	43
	9.1.	Mortality, Clinical and Necropsy Observations	43
	9.2.	Body Weights and Body Weight Changes	43
	9.3.	Sexual Maturation	44
	9.4.	Terminal Body Weights, Liver Weights and Ratios of Liver Weight to	
		Terminal Body Weight	44
	9.5.	Levels of PFH in Liver Homogenates	44
10	0.	DISCUSSION AND CONCLUSION	44
1	1	REFERENCES	16

LIST OF FIGURES

Figure 1.	Maternal Body Weights - F0 Generation Female Mice	48
Figure 2.	Body Weights - F1 Generation Male Mice	49
Figure 3.	Body Weights - F1 Generation Female Mice	50

LIST OF TABLES

Table 1.	Clinical Observations - Summary - F0 Generation Female Mice	51
Table 2.	Maternal Body Weights - Gestation - Summary - F0 Generation Female Mice	54
Table 3.	Maternal Body Weight Changes - Gestation - Summary - F0 Generation Female Mice	55
Table 4.	Maternal Body Weights - Lactation - Summary - F0 Generation Female Mice	56
Table 5.	Maternal Body Weight Changes - Lactation - Summary - F0 Generation Female Mice	58
Table 6.	Natural Delivery Observations - Summary - F0 Generation Female Mice	59
Table 7.	Litter Observations (Naturally Delivered Pups) - Summary - F1 Generation Litters	60
Table 8.	Necropsy Observations - Summary - F0 Generation Female Mice	63
Table 9.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight - Summary - F0 Generation Female Mice.	64
Table 10.	Clinical Observations from Birth to Day 20 Postpartum - Summary - F1 Generation Pups	65
Table 11.	Eye Opening by Litter - Summary - F1 Generation Litters	66
Table 12.	Necropsy Observations - Summary - F1 Generation Pups	67
Table 13.	Clinical Observations - Summary - F1 Generation Male Mice	68
Table 14.	Clinical Observations - Summary - F1 Generation Female Mice	69
Table 15.	Body Weights - Summary - F1 Generation Male Mice	70
Table 16.	Body Weight Changes - Summary - F1 Generation Male Mice	71
Table 17.	Body Weights - Summary - F1 Generation Female Mice	72
Table 18.	Body Weight Changes - Summary - F1 Generation Female Mice	73

Table 19.	Sexual Maturation - Summary - F1 Generation Mice	74
Table 20.	Necropsy Observations - Summary - F1 Generation Male Mice	75
Table 21.	Necropsy Observations - Summary - F1 Generation Female Mice	76
Table 22.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight - Summary - F1 Generation Male Mice	77
Table 23.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight - Summary - F1 Generation Female Mice.	78
Table 24.	Clinical Observations - Individual Data - F0 Generation Female Mice	79
Table 25.	Maternal Body Weights - Presumed Gestation - Individual Data - F0 Generation Female Mice	83
Table 26.	Maternal Body Weights - Lactation - Individual Data - F0 Generation Female Mice	91
Table 27.	Natural Delivery, Implantation Sites, and Pup Viability and Sex - Individual Data - F0 Generation Female Mice/F1 Generation Litters	99
Table 28.	Pup Body Weight Litter Averages from Birth to Day 20 Postpartum - Individual Data - F1 Generation Litters	103
Table 29.	Pup Body Weights from Birth to Day 20 Postpartum - Individual Data - F1 Generation Pups	107
Table 30.	Pup Vital Status and Sex from Birth to Day 20 Postpartum - Individual Data - F1 Generation Pups	127
Table 31.	Necropsy Observations - Individual Data - F0 Generation Female Mice	131
Table 32.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight - Individual Data - F0 Generation Female Mice	136
Table 33.	Clinical Observations from Birth to Day 20 Postpartum - Individual Data - F1 Generation Pups	138
Table 34.	Eve Opening by Litter - Individual Data - F1 Generation Litters	140

Table 35.	Necropsy Observations - Individual Data - F1 Generation Pups144
Table 36.	Clinical Observations - Individual Data - F1 Generation Male Mice150
Table 37.	Clinical Observations - Individual Data - F1 Generation Female Mice154
Table 38.	Body Weights - Individual Data - F1 Generation Male Mice
Table 39.	Body Weights - Individual Data - F1 Generation Female Mice162
Table 40.	Sexual Maturation - Individual Data - F1 Generation Male Mice166
Table 41.	Sexual Maturation - Individual Data - F1 Generation Female Mice167
Table 42.	Necropsy Observations - Individual Data - F1 Generation Male Mice168
Table 43.	Necropsy Observations - Individual Data - F1 Generation Female Mice172
Table 44.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight - Individual Data - F1 Generation Male Mice
Table 45.	Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight - Individual Data - F1 Generation Female Mice

LIST OF APPENDICES

APPENDIX 1 -	PROTOCOL AND AMENDMENTS	178
APPENDIX 2 -	DEVIATIONS	229
APPENDIX 3 -	CERTIFICATE OF ANALYSIS	232
APPENDIX 4 -	ANALYTICAL REPORT	236
APPENDIX 5 -	PHARMACOKINETIC REPORTS	264
APPENDIX 6 -	ENVIRONMENTAL AND HUSBANDRY REPORTS	326
APPENDIX 7 -	HEALTH ANALYSIS REPORTS	362

5. SUMMARY AND CONCLUSION

5.1. Purpose

The purpose of this study was to test for toxic effects/disturbances resulting from PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) treatment of Crl:CD1(ICR) pregnant female mice and development of the embryo and fetus consequent to exposure of the dam from implantation to closure of the hard palate and during lactation. This study was designed to evaluate ICH Harmonised Tripartite Guideline stages C through F of the reproductive process and should permit detection of effects on gestation, parturition, lactation and maternal behavior in female mice, and on the development of the offspring of the treated female mice. Because manifestations of effects induced during this period may be delayed in the offspring, observations were continued through sexual maturity of the F1 generation mice.

5.2. Methods^a

Eighty presumed pregnant Crl:CD1(ICR) mice were randomly assigned to four dosage groups (Groups I through IV), 20 mice per group. Solutions of the test substance, PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid), and/or the vehicle, reverse osmosis membrane processed deionized water (R.O. deionized water), were administered orally once via gavage daily to these naturally bred mice on day 6 of presumed gestation (DG 6) through DG 18 at dosages of 0 (Vehicle), 100, 350 and 500 mg/kg/day. The dosage volume was 5 mL/kg. After completion of the 20 day postpartum period (PPD 20), F0 generation female mice were sacrificed and liver samples were collected from 5 mice per group for pharmacokinetic analysis; mice that did not deliver a litter were sacrificed on DG 23. Additionally, on PPD 20, all pups not selected for continued evaluation were sacrificed. F1 generation mice selected for continued evaluation were sacrificed on PPD 41. Blood and liver samples were collected from five mice per sex per group for pharmacokinetic analysis.

The following parameters were evaluated for F0 generation female mice: viability, clinical observations, body weights, body weight changes, maternal behavior, litter observations, natural delivery, pup body weights, dam and pup necropsy observations.

The following parameters were evaluated for F1 generation male and female mice: viability, clinical observations, body weights, body weight changes, eye opening, age of sexual maturity and necropsy observations.

Detailed descriptions of all procedures used in the conduct of this study are provided in the appropriate sections of this report and in APPENDIX 1 (PROTOCOL).

5.3. Results

Totals of 3, 6, 1 and 3 F0 generation mice were found dead in the 0, 100, 350 and 500 mg/kg/day dosage groups, respectively. Single deaths that occurred in the mid dosage and high dosage groups during the gestation period appear to have been related to administration of the test substance based on the timing of the deaths (DGs 8 and 13). No other mortality related to PFH ammonium salt occurred. The deaths in the control and low dosage group all occurred between days 13 and 16 of lactation (DLs 13 to 16). These deaths and possibly two of the three deaths that occurred in the highest dosage group appeared to be due to the stress of nursing which is known to occur in mice. All unscheduled deaths are described in the following text table.

Summary Mortality Information							
Dosage (mg/kg/day)	0 (Vehicle)	100	350	500			
Number (N)	20	20	20	20			
Pregnant	19	19	20	18			
Litters Delivered	19	19	19	17			
Found Dead	3	6	1	3			

Additionally, Totals of 1, 0, 2 and 6 mice in the 0, 100, 350 and 500 mg/kg/day dosage groups, respectively, were sacrificed due to no surviving pups.

During the gestation period, the only clinical observations considered related to the test substance was slight excess salivation in 3 mice in the 350 mg/kg/day dosage group mice and slight to moderate salivation in 6 mice 500 mg/kg/day dosage group mice.

A purple area on the abdomen occurred in 10, 12, 13 and 9 mice in the four respective dosage groups. Abdominal distention occurred in three mice in the 0 and 100 mg/kg/day dosage groups. These observations were considered secondary to the stress of nursing as the sign occurred late in lactation.

Body weights and body weight gains during the gestation period and body weights during the lactation period were unaffected by dosages of the test substance as high as 500 mg/kg/day. All values were comparable among the four dosage groups and did not differ significantly.

Body weight gains during lactation were significantly reduced for days 0 to 4 of lactation in the 350 and 500 mg/kg/day dosage groups compared to the control group value. Although no additional significant differences occurred among the groups for body weight gain during lactation, the average gain during the entire lactation period was reduced in the 500 mg/kg/day dosage group compared to the control group value. Body weight gains from DL 0 to 20 were 97.7%, 110.3% and 64.4% of the control group value.

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

Pregnancy occurred in 19, 19, 20 and 18 of the 20 mated female mice in the 0 (Vehicle), 100, 350 and 500 mg/kg/day dosage groups, respectively. All mated mice were pregnant and delivered a litter. The number of pups dying on days 1 to 4 in the 350 and 500 mg/kg/day dosage groups was significantly increased compared to the control group. The number of pups dying on PPD 0 was increased in the 300 mg/kg/day dosage group and significantly increased in the 500 mg/kg/day dosage group compared to the control group. The number of mice with stillborn pups and the number of mice with all pups dying on PPD 0 to 3 were significantly increased in the 500 mg/kg/day dosage group compared to the control group values. The following additional effects occurred in the 500 mg/kg/day dosage group: the average litter size was reduced at birth and throughout the lactation period (with a significant reduction on PPD 4); and the day 4 and day 7 viability indices were significantly reduced compared to the control group value. The day 7 viability index was significantly reduced in the 350 mg/kg/day dosage group. The average number of surviving pups per litter was significantly reduced ($p \le 0.01$) in the 500 mg/kg/day dosage group for PPDs 4, 7, 14 and 20 compared to the control group values.

Pup body weights in all treated groups were generally lower in the treated groups compared to the control group values. Pup body weights were significantly reduced on PPD 0 in the 100 mg/kg/day and higher dosage groups compared to the control group value. Statistically significantly reduced pup body weights persisted in the 350 mg/kg/day dosage group through PPD 7 and in the 500 mg/kg/day dosage group through PPD 4. On PPD 20 average pup weights per litter were 89%, 80% and 88% of the control group value. The lack of dosage-dependency can be attributed to the differences in litter size among the groups.

Terminal body weights were comparable among the four dosage groups. The absolute weights of the liver and the ratio of the liver weight to the terminal body weight did not differ significantly among the groups. Tan areas in the liver occurred in one mouse in the 350 mg/kg/day dosage group and five ** of 20 mice in the 500 mg/kg/day dosage group.

No clinical observations in the F1 generation pups were attributed to dosages of the test substance as high as 500 mg/kg/day. The average day that 50% of the pups had open eyes was significantly longer in the 350 mg/kg/day dosage group compared to the control group value. The lack of a significant difference in the 500 mg/kg/day dosage group may be related to the higher number of early pups deaths and reduced litter size in this group. The percentage of pups per litter with open eyes was significantly reduced in the 350 and 500 mg/kg/day dosage groups on PPD 14 compared to the control group value. An increased number of pups in the 500 mg/kg/day dosage group that were found dead or stillborn in the 500 mg/kg/day dosage group had no milk in the stomach. All pups that survived to PPD 20, and were not continued on study appeared normal at necropsy.

17 of 365

^{**} Significantly different from the control group value ($p \le 0.01$).

5.3.1. Pharmacokinetic Analysis

In the 100 mg/kg/day dosage group, all liver homogenates analyzed were below the lower limit of quantitation. In the 350 mg/kg/day dosage group, three of eight samples had analytical results that were quantifiable. The highest level (87.5 ug/mL) occurred in a mouse that was found dead on DG 13. The other mice had much lower levels of PFH but it is interesting that both of these mice were sacrificed early after their litters had died off. These were the only mice in this group that lost their litters. In the 500 mg/kg/day dosage group five of 16 samples had analytical results that were quantifiable. The highest level (98.4 ug/mL) occurred in a mouse that was found dead on DG 6. Other mice had much lower levels of PFH but each of these mice had litters that died early. Two samples that were below the lower limit of quantitation were from mice that lost their litters.

5.3.2. Postweaning Period

Postweaning, one F1 generation male mouse in the 350 mg/kg/day maternal dosage group was found dead on PPD 23. There were no clinical signs noted during the postweaning period. This mouse had the lowest body weight in its group. At necropsy, all tissues appeared normal for a moderate degree of autolysis. This mouse apparently did not thrive postweaning. All other F1 generation male and female mice survived to scheduled sacrifice.

All clinical observations in the F1 generation male and female mice were considered unrelated to maternal administration of the test substance. All F1 generation male mice appeared normal at necropsy. One F1 generation female mouse in the 100 mg/kg/day dosage group had a small left kidney. No other necropsy observations occurred in these mice.

Body weights and body weight gains of the F1 generation male mice were unaffected by maternal dosages of the test substance as high as 500 mg/kg/day. The only significant difference that occurred among the groups were significantly reduced body weights on PPD 21 in the 100 and 350 mg/kg/day dosage groups and increased body weight gains in the 100 and 350 mg/kg/day dosage group on PPDs 28 to 35 compared to the control group value. No other significant differences occurred among the groups during the postweaning period (PPD 21 to 41). Body weights were significantly reduced in the F1 generation female mice on PPDs 21 and 28 in the 100 and 350 mg/kg/day dosage group and on PPDs 35 and 41 (350 mg/kg/day only); and body weights were significantly reduced in the 500 mg/kg/day dosage group on PPD 35 compared to the control group values. Body weight gains did not significantly different among the groups for the postweaning period.

Sexual maturation was unaffected by maternal dosages of the test substance as high as 500 mg/kg/day. The average day on which preputial separation or vaginal patency occurred was comparable among the four dosage groups.

Terminal body weights in the F1 generation male mice were comparable among the four groups. The ratio of the liver weight to the terminal body weight was significantly reduced in the 500 mg/kg/day dosage group compared to the control group value. Terminal body weights in the F1 generation female mice were significantly reduced in the 350 mg/kg/day dosage group compared to the control group value. Maternal dosages of the test substance as high as 500 mg/kg/day did not affect the liver weights or the ratio of liver weights to the terminal body weight.

No detectable level of PFH was found in the liver homogenate from any F1 generation male or female pup.

6. DISCUSSION AND CONCLUSION

Administration of PFH Ammonium Salt to pregnant mice at dosages of 0 (Vehicle), 100, 350 and 500 mg/kg/day resulted in minimal adverse effects. Toxicity was seen only in the highest dose group and included single mortalities, excess salivation and changes in body weight gains during the lactation period in the 350 and 500 mg/kg/day dosage groups. No adverse effects occurred in the maternal mice in the 100 mg/kg/day dosage group compared to the control group values.

In the F1 generation litters, pup body weights were significantly reduced on PPD 0 in the 100 mg/kg/day and higher dosage groups, but this decrease in body weights persisted only in the 350 and 500 mg/kg/day dosage groups. On PPD 20, average pup weights per litter were 89%, 80% and 88% of the control group value. The lack of dosage-dependency can be attributed to the differences in litter size among the groups.

Additional effects, including stillbirths, reductions in viability indices, and delays in physical development in F1 generation mice occurred only in the 350 and 500 mg/kg/day dosage groups.

Levels PFH Ammonium salt in the livers from dams administered the 100 mg/kg/day dosage were all below the lower limit of quantization ($0.02 \, \mu\text{g/mL}$). In the $350 \, \text{mg/kg/day}$ dosage group, three of eight samples had analytical results that were quantifiable. The highest level ($87.5 \, \text{ug/mL}$) occurred in a mouse that was found dead on DG 13. The other mice had much lower levels of PFH Ammonium salt, but it is interesting that both of these mice were sacrificed early after their litters had died off. These were the only mice in this group that lost their litters. In the $500 \, \text{mg/kg/day}$ dosage group five of $16 \, \text{samples}$ had analytical results that were quantifiable. The highest level ($98.4 \, \text{ug/mL}$) occurred in a mouse that was found dead on DG 6. The other mice had much lower levels of PFH but each of these mice had litters that died early. Two samples that were below the lower limit of quantization were from mice that lost their litters. Based on these results, the variability in the quantization of PFH ammonium salt in the liver may be due to the time of sampling post the start of dosing.

In a previously conducted study with the same study design but at dosage levels of 0 (Vehicle), 7, 35 and 175 mg/kg/day (Protocol UZS00010), no PFH Ammonium salt

was found in any liver sample and adverse effects occurred only in the 175 mg/kg/day dosage group (increased number stillborn pups and pups dying day 1 along with a reduction in pup weights on PPD 1, two litters with pups with corneal opacity).

The results from the previous study (Charles River Labs Study No. UZS00010) coincide with the results in this study and indicate a very minimal effect of PFH at 100 mg/kg/day with a clear no-observable-effect-level at 35 mg/kg/day.

On the basis of these data from this study, the maternal no-observable-adverse-effect-level (NOEL) for PFH Ammonium Salt is 100 mg/kg/day. The NOAEL in the F1 generation is below 100 mg/kg/day. None of the effects observed in the pups preweaning persisted into the postweaning period.

L-JUL-WII

Date

Executive Director, Site Operations and Toxicology Study Director

7. DESCRIPTION OF TEST PROCEDURES^a

7.1. Conduct of Study

7.1.1. Sponsor

Daikin Industries, LTD, Chemical Division, Umeda Center Building, 4-12 Nakazaki-Nishi, 2-chrome, Kita-ku, Osaka 530-8323, JAPAN

7.1.2. Testing Facility

Charles River Laboratories Preclinical Services, 905 Sheehy Drive, Building A, Horsham, PA, USA 19044

7.1.3. Study Number

20005045

7.1.4. Purpose of the Study

The purpose of this study was to test for toxic effects/disturbances resulting from PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) treatment of Crl:CD1(ICR) pregnant female mice and development of the embryo and fetus consequent to exposure of the dam from implantation to closure of the hard palate and during lactation. This study was designed to evaluate ICH Harmonised Tripartite Guideline stages C through F of the reproductive process and should permit detection of effects on gestation, parturition, lactation and maternal behavior in female mice, and on the development of the offspring of the treated female mice. Because manifestations of effects induced during this period may be delayed in the offspring, observations were continued through sexual maturity of the F1 generation mice.

7.1.5. Study Design

This study was conducted in compliance with the Good Laboratory Practice (GLP) regulations of the U.S. Environmental Protection Agency⁽¹⁾, the Ministry of Agriculture, Forestry and Fisheries⁽²⁾ and the Organisation for Economic Co-operation and Development⁽³⁾ except for the bioanalysis and analytical portion of the study which was conducted in compliance with the appropriate Organization for Economic Co-operation and Development (OECD) Principles of GLP (ENV/MC/CHEM(98)17.

a. Detailed descriptions of all procedures used in the conduct of this study are provided in the appropriate sections of this report and in APPENDIX 1. Deviations are available in APPENDIX 2 and in the raw data.

7.1.6. Ownership of the Study

The Sponsor owns the study. All raw data, analyses, reports and preserved tissues are the property of the Sponsor.

7.1.7. Study Monitor

(Daikin Industries, LTD, Chemical Division, Settsu City,

7.1.8. Study Director

Osaka, Japan)

(Executive Director, Site Operations

and Toxicology)

Address as cited previously for Testing Facility

7.1.9. Technical Performance

7.1.9.1. Charles River Laboratories Preclinical Services, Pennsylvania, USA

7.1.9.2. Charles River Laboratories Preclinical Services, Montreal, CANADA

(Principal Investigator) - Test substance analysis

(Principal Investigator) - Pharmacokinetic analysis

7.1.10. Report Preparation

7.1.11. Report Review

7.1.12. Date Protocol Signed

21 September 2010

7.1.13. Dates of Technical Performance

Experimental Start Date (OECD)	21 SEP 2010
Experimental Start Date (EPA)	06 OCT 2010
Experimental Completion/Termination Date	03 JAN 2011

7.1.13.1. F0 Generation Mice

Mouse Arrival	21 SEP 2010
Cohabitation Period	29 SEP 2010 PM – 04 OCT 2010 AM
DG^{a} 0	30 SEP 2010 – 04 OCT 2010
Dosage Period (DGs 6 through 18)	06 OCT 2010 – 22 OCT 2010
Delivery Period (DL ^b 0)	18 OCT 2010 – 23 OCT 2010
DG 23 Sacrifice (Mice that did not	
deliver a litter)	10 OCT 2010 – 25 OCT 2010
DL 20 Sacrifice (Dams and pups not	
selected for continued observation)	07 NOV 2010 – 12 NOV 2010

7.1.13.2. F1 Generation Mice

Sexual Maturation	
Female Mice	07 NOV 2010 – 30 NOV 2010
Male Mice	13 NOV 2010 – 26 NOV 2010
Blood Collection	29 NOV 2010 – 30 NOV 2010
Scheduled Sacrifice	
and Tissue Collection	
F1 Generation (PPD ^c 41)	28 NOV 2010 – 03 DEC 2010

7.1.14. Records Maintained

The original report, raw data and reserve samples of the bulk test substance and bulk vehicle are retained in the archives of the Testing Facility. Preserved tissues are retained in the archives of the Testing Facility for ten years after the mailing of the draft final report, after which time the Sponsor will decide their final disposition. All unused test substance formulations were discarded at the Testing Facility. Backup samples shipped to Charles River Laboratories Preclinical Services, Montreal (PCS-MTL) were discarded at the Test Site. The remaining bulk test substance was discarded at the Testing Facility and documented in the raw data. Remaining unused blood, serum and liver samples will be retained at PCS-MTL for approximately 1 year after dispatch of the final report or until authorized to discard by the Study Director.

a. DG is an abbreviation used for day of (presumed) gestation.

b. DL is an abbreviation used for day of lactation (dams).

c. PPD is an abbreviation used for day postpartum (litters).

7.2. Test Substance and Vehicle Information

Test Substance Information						
Name PFH Ammonium Salt (C-1500N) ^a Description Colorless liquid						
Storage	Room temperature		Supplier	Sponsor		
Lot Number			Date Received	Expiration Date		
7005			22 APR 2009	31 JUL 2012		

 Synonymous with C-1500N and Ammonium salt of Perfluorinated Hexanoic Acid. The test substance was supplied as a 50% aqueous solution.

Vehicle							
Name	Description	Lot Number	Supplier	Date Received	Storage	Expiration	
R.O. Deionized Water ^b			с				

- b. R.O. deionized water is an abbreviation used for reverse osmosis membrane processed deionized water.
- c. Reverse osmosis membrane processed deionized water (R.O. deionized water) is available from a continuous source at the Testing Facility and is maintained at room temperature.

Sampling									
Bulk Test Substance Stability									
	Sample Size: 10 mL								
Date Sample	d		Date S	Shipped	R	Recipient	t	S	hipping Conditions
22 OCT 2010	0		22 OC	T 2010	CRL	- Mont	·eal ^a	A	mbient temperature
		•	Вι	ılk Test Subs	stance Reser	ve		•	
				Sample Si	ze: 5 mL				
Date Samp	led			Storage C	Condition			Dat	e Archived
04 OCT 20	010			Room ten	nperature			16	NOV 2010
Bulk Vehicle Reserve									
				Sample Si	ze: 5 mL				
Name		D	ate Sam	pled	Storage Conditions Date Archive		Date Archived		
R.O. Deionized Wat	ter	04	4 OCT 2	010	Room temperature		16 NOV 2010		
			Cone	centration an	d Homogen	eity ^b			
				Sample Si	ze: 2 mL				
Date Sampled]	Date Shipp	ed	Recij	pient	Shippi	ng Condit	ions	Purpose
05 OCT 2010	(05 OCT 20	10						C, H
05 OCT 2010	05 OCT 2010 13 OCT 2010								C, H (backup)
09 OCT 2010		11 OCT 20		CRL - Montreal ^a		.	Ambient		С
09 OCT 2010		19 OCT 20				temperature			C (backup)
16 OCT 2010		18 OCT 20							С
16 OCT 2010	2	26 OCT 20	10						C (backup)

- a. Charles River Laboratories Montreal, CANADA
- b. Quadruplicate samples, for analysis of concentration and homogeneity, were taken from the top, middle and bottom of each concentration 24 hours or more after preparation, and no more than 24 hours before dosing on the first day all concentrations were prepared. Quadruplicate samples, for analysis of concentration, were taken from the middle of each concentration at the mid-point of the study period and on the last day all concentrations were prepared 24 hours or more after preparation, and no more than 24 hours before dosing. Two samples from each quadruplicate set were shipped for analysis; the remaining samples were stored at room temperature at the Testing Facility as backup samples and shipped one week after successful delivery of the initial shipment. Backup samples were stored room temperature until the results of the initial analyses were available and were discarded at the Test Site.
- C Concentration
- H Homogeneity

7.2.1. Special Handling Instructions

Double nitrile gloves, dust-mist/HEPA-filtered mask, appropriate eye protection and protective clothing were worn during formulation preparation and dosage.

7.2.2. Analysis of Activity/Purity

The test substance was considered 95% active/pure by weight of PFH acid for the purpose of dosage calculations.

The test substance is a marketed product and characterized by its labeling. Information to document or certify the identity, composition, strength and activity/purity of the test substance was provided by the Sponsor to the Testing Facility. A Certificate of Analysis is available in APPENDIX 3.

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the vehicle that would have interfered with the results of this study.

7.2.3. Test Substance and Vehicle Preparation and Storage Conditions

Solutions of the test substance were prepared once weekly at the Testing Facility and stirred continuously for at least 24 hours prior to and during dosage administration and stored at room temperature. The vehicle (R.O. water) was available from a continuous source at the Testing Facility and maintained at room temperature.

7.2.4. Analytical Results

The study samples analyzed were within the acceptance criteria of $\pm 10\%$ of their mean nominal concentrations. For homogeneity, the relative standard deviation (RSD) for the formulation for the grand mean of the average value for the top, middle and bottom formulations for each group was $\leq 5\%$. Homogeneity results showed that the formulation technique used produces homogeneous preparations. Detailed results of the prepared test substance concentration, homogeneity and bulk stability analysis are available in APPENDIX 4.

Stability of the prepared test substance formulations were assessed under Charles River Laboratories Preclinical Services Montreal Study Number 211053 (Testing Facility Study No. UZS00009). Stability was demonstrated for 10 days at room temperature from 7 mg/mL to 70 mg/mL, and for at least 8 days at up to 200 mg/mL under Charles River Laboratories Preclinical Services Montreal Validation study CAD-001.

7.3. Test System

7.3.1. Species/Strain

Mouse/Crl:CD1(ICR)

7.3.2. Supplier (Source)

Charles River Laboratories, Inc., Kingston, NY, USA

7.3.3. Sex

Female (Note: Male mice were used only for the purpose of breeding and are not considered part of the Test System.)

7.3.4. Rationale for Test System

The Crl:CD1(ICR) mouse was selected as the Test System because: 1) it is one mammalian species accepted and widely used throughout the industry for nonclinical studies of developmental toxicity (embryo-fetal toxicity/teratogenicity); 2) this strain has been demonstrated to be sensitive to developmental toxicants; and 3) historical data and experience exist at the Testing Facility.

7.3.5. Test System Data

Number of Mice Acclimated	100
Number of Mice Assigned to Study	80
Approximate Date of Birth	23 JUL 2010
Approximate Age at Arrival	61 days
Weight (g) the Day after Arrival	24.3 - 28.2
Weight (g) at Study Assignment (DG 0)	26.1 - 30.0

7.3.6. Method of Randomization

7.3.6.1. F0 Generation Mice

Upon arrival, mice were assigned to individual housing on the basis of computer-generated random units. Healthy, mated female mice were assigned to four dosage groups (Groups I through IV), 20 mice per group, using a computer-generated (weight ordered) randomization procedure based on body weights recorded on DG 0.

7.3.6.2. F1 Generation Pups/Mice

Litters were not culled during the lactation period because random selection of pups for culling could have resulted in potential biases in pup viabilities and body weight gains during this period.

All F1 generation mice were weaned at the same age, based on observed growth and viability of the pups, on PPD 20.

At weaning, a table of random units was used to select 20 male and 20 female pups per group, resulting in a total of 160 F1 generation mice (80 per sex) chosen for continued evaluation. At least one male pup and one female pup per litter, when possible, was selected.

7.3.7. System of Identification

7.3.7.1. F0 Generation Mice

Male mice were given permanent identification numbers upon assignment to the Testing Facility's breeder male mouse population. Breeder mice were permanently identified using a tail tattoo. Female mice were given temporary numbers at receipt and given permanent identification numbers when assigned to the study on the basis of DG 0 body weights. Female mice were permanently identified using a tail tattoo. Cage tags were marked with the study number, permanent mouse number, sex, generation, species, test substance identification, group number and dosage level.

7.3.7.2. F1 Generation Pups/Mice

Pups were not individually identified during the lactation period; all parameters were evaluated in terms of the litter. At weaning, F1 generation mice were identified by tail tattoo. Cage tags were marked with the study number, permanent mouse number, sex, generation, test substance identification, group number and dosage level.

7.4. Husbandry

7.4.1. Research Facility Registration

USDA Registration No. 14-R-0144 under the Animal Welfare Act, 7 U.S.C. 2131 et seq.

7.4.2. Veterinary Treatment

During the course of the study, individual mice were examined by the veterinary staff when needed. Records of examinations, treatments and feed supplementation are maintained in the raw data. Feed supplementation included a deionized water soaked feed pellet. Treatments included the provision of a warming pad under half of the nesting box. None of the medical examinations, treatments or feed supplementations had an adverse impact on the integrity of the study data or on the interpretation of the study results. None of the medical examinations, treatments, and/or feed supplementation had an adverse impact on the integrity of the study data or on the interpretation of the study results.

Due to the unexpected number of deaths in lactating dams, as described in the results, fecal samples were collected for health monitoring of viral status and to check for *clostridium perfringens*. Samples for *clostridium perfringens* were sent to Zoologix Inc., to rule out any other cause of death except stress from nursing. No adverse results were reported. Results of these analysis are available in APPENDIX 7.

7.4.3. Study Room

The study room was maintained under conditions of positive airflow relative to a hallway and independently supplied with a minimum of 10 changes per hour of 100% fresh air that had been passed through 99.97% HEPA filters. Room temperature and humidity were monitored constantly throughout the study. Room temperature was targeted at 64°F to 79°F (18°C to 26°C); relative humidity was targeted at 30% to 70%.

7.4.4. Housing

All cage sizes and housing conditions were in compliance with the *Guide for the Care* and *Use of Laboratory Animals*⁽⁴⁾.

7.4.4.1. F0 Generation Mice

F0 generation mice were individually housed in nesting boxes, except during the cohabitation and postpartum periods. During cohabitation, each pair of mice was housed in the male mouse's cage. Each dam and delivered litter were housed in a common nesting box during the postpartum period.

7.4.4.2. F1 Generation Mice

After weaning (PPD 20), F1 generation mice were housed in nesting boxes. Mice were pair housed (by dosage group) until at least PND 27, after which point the mice were individually housed.

7.4.5. Light

An automatically controlled 12-hours light:12-hours dark fluorescent light cycle was maintained. Each dark period began at 1900 hours (\pm 30 minutes).

7.4.6. Sanitization

Cages were changed approximately every other week. Bedding was changed as often as necessary to keep the mice dry and clean.

a. See APPENDIX 6 (ENVIRONMENTAL AND HUSBANDRY REPORTS).

7.4.7. Feed

Mice were given *ad libitum* access to Certified Rodent Diet[®] #5002 (PMI[®] Nutrition International, Inc., St. Louis, MO, USA) in individual feeders.

7.4.8. Feed Analysis

Analyses were routinely performed by the feed supplier. No contaminants at levels exceeding the maximum concentration for certified feed or deviations from expected nutritional requirements were detected by these analyses. Copies of the results of the feed analyses are available in APPENDIX 6 and in the raw data.

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the feed that would have interfered with the results of this study.

7.4.9. Water

Local water that had been processed by passage through a reverse osmosis membrane (R.O. water) was available to the mice *ad libitum* from individual water bottles attached to the cages. Chlorine was added to the processed water as a bacteriostat.

7.4.10. Water Analysis

The processed water is analyzed twice annually for possible chemical contamination (Lancaster Laboratories, Lancaster, PA, USA) and monthly for possible bacterial contamination (QC Laboratories, Southampton, PA, USA). Copies of the results of the water analyses are available in APPENDIX 6 and in the raw data.

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the water that would have interfered with the results of this study.

7.4.11. Bedding Material

Bed-o'cobs® bedding (The Andersons Industrial Products Group, Maumee, OH, USA) was used as the nesting material.

7.4.12. Bedding Analysis

Each lot of bedding is analyzed for possible contamination (Lancaster Laboratories, Lancaster, PA, USA). Copies of the results of the bedding analyses are available in APPENDIX 6 and in the raw data.

Neither the Sponsor nor the Study Director was aware of any potential contaminants likely to have been present in the bedding that would have interfered with the results of this study.

7.4.13. Day Numbering System

Gestation day 0 is defined as the day a copulatory plug observed *in situ*.

The day of birth is designated postpartum day 0 (day 0 of lactation) in Addendum 10 to the Pesticide Assessment Guidelines of the U.S. Environmental Protection Agency (EPA). This same day is designated PPD 1 (DL 1) in the Standard Operating Procedures of the Testing Facility. In the report text, as well as summary and individual tables, the day of birth was adjusted so that the day of birth and all subsequent lactation/postpartum days match the EPA guideline.

7.5. Methods

7.5.1. Dosage Administration

7.5.1.1. F0 Generation Mice

Dosage Group	Number of Mice Assigned to Study	Dosage (mg/kg/day)	Concentration (mg/mL)	Dosage Volume (mL/kg)	Assigned Mice Numbers
I	20	0 (Vehicle)	0	5	8311 – 8330
II	20	100	20	5	8331 - 8350
III	20	350	70	5	8351 – 8370
IV	20	500	100	5	8371 – 8390

The test substance was considered 95% by weight of PFH acid for dosage calculations.

7.5.1.2. F1 Generation Mice

Dosage Group	Maternal Dosage (mg/kg/day)	Number of Mice Per Sex	Assigned F1 Generation Mouse Numbers	
			Male Mice	Female Mice
I	0 (Vehicle)	20	9001 – 9020	9081 – 9100
II	100	20	9021 - 9034, 9036 - 9040, 9102 ^b	9035 ^a , 9101, 9103 - 9120,
III	350	20	9041 – 9060	9121 – 9140
IV	500	20	9061 – 9080	9141 – 9160

a. Mouse 9035 was discovered to be female after originally being weaned as a male.

b. Mouse 9102 was discovered to be male after originally being weaned as a female.

7.5.2. Rationale for Dosage Selection

In the combined developmental and perinatal/postnatal reproduction toxicity study (UZS00010⁽⁵⁾), mice were administered the test substance at doses of 7, 35 and 175 mg/kg on DGs 6 through 18. No mortality related to the test substance occurred on study, and no adverse clinical signs occurred during this study. Due to a lack of observed toxicity, dosages of 100, 350 and 500 mg/kg/day were selected for this study.

7.5.3. Route and Rationale for Route of Administration

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is one possible route of human exposure.

7.5.4. Method and Frequency of Administration

7.5.4.1. F0 Generation Mice

Female mice were administered the test substance and/or vehicle once daily from DG 6 through DG 18. Dosages were adjusted daily for body weight changes and given at approximately the same time each day. Dams in the process of delivering pups were not adminstered the test substance or vehicle in order to preclude possible disruption to maternal behavior and/or cannibalization of the pups.

7.5.4.2. F1 Generation Pups

F1 generation pups were not directly administered the test substance and/or vehicle, but may have been possibly exposed to the test substance and/or vehicle during maternal gestation (*in utero* exposure) or via maternal milk during the lactation period.

7.5.5. Method of Study Performance

7.5.5.1. F0 Generation Mice

After acclimation, 100 virgin female mice were cohabitated with 100 breeder male mice, one male mouse per female mouse. The cohabitation period consisted of a maximum of 5 days. Female mice with a copulatory plug observed *in situ* were considered to be at DG 0 and assigned to individual housing.

Mice were observed for viability at least twice each day of the study and for clinical observations and general appearance once weekly during acclimation and on DG 0. The mice were also examined for clinical observations, abortions, premature deliveries and deaths prior to dosage administration and between one and two hours after dosage administration and once daily during the postdosage period.

Body weights were recorded once weekly during the acclimation period, on DG 0, and daily during the dosage and postdosage periods.

Mice were evaluated for adverse clinical signs observed during parturition, duration of gestation (DG 0 to the day the first pup was observed), litter sizes (all pups delivered) and pup viability at birth, fertility index (percentage of matings that result in pregnancies), gestation index (percentage of pregnancies that result in birth of live litters), number of offspring per litter (live and dead pups), number of implantation sites, general condition of dam and litter during the postpartum period, viability indices (percentage of pups born that survive 4 and 7 days) and lactation index (percentage of pups born that survive 20 days). Maternal behavior was evaluated on DLs 0, 4, 7, 14 and 20.

7.5.5.2. F1 Generation Pups

Day 0 of lactation (postpartum) was defined as the day of birth and was also the first day on which all pups in a litter were individually weighed (pup body weights were recorded after all pups in a litter were delivered and groomed by the dam).

Each litter was evaluated for viability and general appearance at least twice daily. The pups in each litter were counted once daily. Clinical observations were recorded once daily during the preweaning period. Pup body weights were recorded on DLs 0 (birth), 4, 7, 14 and 20.

During the preweaning period, pups were evaluated for eye opening beginning PPD 10.

7.5.5.3. F1 Generation Mice

Mice were observed for viability daily during the postweaning period. These mice were also examined for clinical observations and general appearance once daily during the postweaning period. Body weights were recorded weekly during the postweaning period.

Female mice were evaluated for the age of vaginal patency, beginning on PPD 20. Male mice were evaluated for the age of preputial separation, beginning on PPD 26.

7.5.6. Gross Necropsy^a

Gross lesions were retained in neutral buffered 10% formalin for possible future evaluation. Unless specifically cited below, all other tissues were discarded. Representative photographs of gross lesions are available in the raw data.

Mice were sacrificed by carbon dioxide asphyxiation. Pups were sacrificed by an intraperitoneal injection of sodium pentobarbital (pups \leq 14 days of age) or by carbon dioxide asphyxiation (pups \geq 15 days of age).

7.5.6.1. F0 Generation Mice

After completion of the 21-day postpartum period, female mice were sacrificed by carbon dioxide asphyxiation and a gross necropsy of the thoracic, abdominal and pelvic viscera was performed. Five livers per group were excised, weighed and frozen on dry ice. The number and distribution of implantation sites were recorded after staining with 10% ammonium sulfide⁽⁶⁾. Livers were maintained frozen (≤-70°C) until shipment for analysis to PCS-MTL.

Mice that did not deliver a litter were sacrificed on DG 23 and examined for gross lesions. The number and distribution of implantation sites were recorded after staining with 10% ammonium sulfide⁽⁶⁾ to confirm the absence of implantation sites. Livers were excised, weighed and frozen on dry ice. Livers were maintained frozen (\leq -70°C) until shipment for analysis to PCS-MTL.

Dams with no surviving pups were sacrificed after the last pup was found dead or missing, presumed cannibalized. A gross necropsy of the thoracic, abdominal and pelvic viscera was performed and implantation sites were recorded after staining with 10% ammonium sulfide⁽⁶⁾. Livers were excised, weighed and frozen on dry ice. Livers were maintained frozen (≤-70°C) until shipped for analysis to PCS-MTL.

Mice that died before scheduled termination were examined for the cause of death as soon as possible after the observation was made. The mice were examined for gross lesions. The lungs, trachea and esophagus were perfused and saved in neutral buffered 10% formalin for possible future evaluation. The heart, kidneys, stomach and spleen were retained in neutral buffered 10% formalin for possible histological evaluation. Gravid uterine weights were recorded. Pregnancy status and uterine contents of female mice were recorded. Conceptuses *in utero* were examined to the extent possible, using the same methods described for term fetuses/pups. The livers were excised, weighed and frozen on dry ice. Livers were maintained frozen (≤-70°C) until shipped for analysis to PCS-MTL.

a. A table of random units was used to select one F0 generation vehicle group mouse and one F1 generation vehicle group mouse of each sex from which all tissues examined at necropsy were retained, in order to provide control tissues for potential comparative histopathological evaluations.

The liver samples were analyzed at PCS-MTL (test site reference no. 142578) using a validated LC-MS/MS method (PCS-MTL Study no. 141659). The bioanalytical method was validated to meet the minimum requirements of the appropriate PCS-MTL Standard Operating Procedures. The pharmacokinetic report generated for this phase of the study is available in APPENDIX 5.

7.5.6.2. F1 Generation Pups

Pups that died before initial examination of the litter for pup viability were evaluated for vital status at birth. The lungs were removed and immersed in water. Pups with lungs that sank were considered stillborn; pups with lungs that floated were considered liveborn and to have died shortly after birth.

Pups found dead were examined for gross lesions and for the cause of death as soon as possible. All pups found dead on PPD 1 to 3 were preserved in Bouin's solution for possible future evaluation; all pups found dead on PPD 4 to 20 were preserved in neutral buffered 10% formalin.

On DL 20, all pups not selected for continued evaluation were sacrificed by carbon dioxide asphyxiation and examined for gross lesions. Necropsy of the pups included a single cut at the suture of the frontal and parietal bones of the skull, and the cross-sectioned brain was examined for hydrocephaly.

One male mouse that died before scheduled termination was examined for the cause of death as soon as possible after the observation was made. The mouse was examined for gross lesions. The heart, kidneys, lungs, stomach and spleen were retained in neutral buffered 10% formalin for possible histological evaluation. The liver was excised, weighed and frozen on dry ice. The liver sample was maintained frozen (\leq -70°C) until shipped for analysis to PCS-MTL.

7.5.6.3. F1 Generation Mice

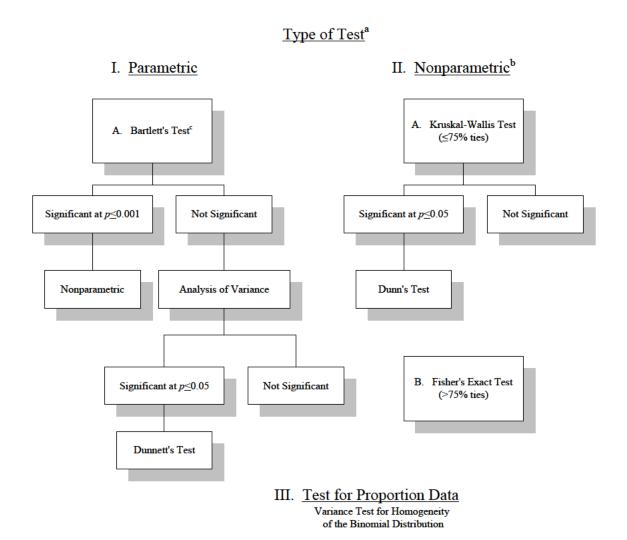
Five mice per sex per group (total 40 mice) were sacrificed on PPD 41 for sample collection for pharmacokinetic analysis. Blood samples (0.5 mL to 1.0 mL) and livers were collected from these mice. Blood samples were collected via the vena cava after sacrifice. The blood samples were transferred into uncoated (red top) tubes and spun in a refrigerated (4°C) centrifuge for 10 minutes at 3500 RPM. The resulting serum was transferred into appropriately labeled polypropylene tubes. All samples were frozen on dry ice as soon as possible and maintained frozen (≤-70°C) until shipment for analysis to PCS-MTL.

A gross necropsy of the thoracic, abdominal and pelvic viscera was performed. The livers (5 per group per sex) were excised, weighed and frozen on dry ice. Livers were maintained frozen (\leq -70°C) until shipment for analysis to PCS-MTL.

The test substance was used as reference material for pharmacokinetic analysis.

The serum samples were analyzed at PCS-MTL (test site reference no. 142577) using a validated LC-MS/MS method (PCS-MTL Study no. 141837). The bioanalytical method was validated and met the minimum requirements of the appropriate PCS-MTL Standard Operating Procedures. The pharmacokinetic report generated for this phase of the study is available in APPENDIX 5.

The remaining mice were sacrificed by carbon dioxide asphyxiation on PPD 41. A gross necropsy of the thoracic, abdominal and pelvic viscera was performed.


7.5.7. Data Collection and Statistical Analyses

Data generated during the course of this study were recorded either by hand or using the Argus Automated Data Collection and Management System, and the Vivarium Temperature and Relative Humidity Monitoring System. All data were tabulated, summarized and/or statistically analyzed using the Argus Automated Data Collection and Management System, the Vivarium Temperature and Relative Humidity Monitoring System, Microsoft® Excel (part of Microsoft® Office 2003 or later versions) Quattro Pro 8 and SAS.

Empower (Waters Corporation) was used for formulation sample analysis.

Data collection for serum and liver concentration analysis using LC-MS/MS were performed using Analyst from MDS Sciex. Statistical analysis, including regression analysis, and descriptive statistics such as arithmetic means and standard deviations, accuracy and precision were performed using Watson laboratory Information Management system (LIMS) and Microsoft Excel. Tables were prepared from retrospective manual entry on computer (Microsoft Word). All raw data and documents generated at PCS-MTL during this study and the final report will be transferred to the scientific archives of PCS-MTL for a period of approximately 1 year from finalization. Storage details following the 1 year archive period will be documented in the raw data.

Averages and percentages were calculated. Litter values were used where appropriate. The following schematic represents the statistical analyses of the data:

- a. Statistically significant probabilities are reported as either $p \le 0.05$ or $p \le 0.01$.
- b. Proportion data are not included in this category.
- c. Test for homogeneity of variance.

Clinical observations and other proportional data were analyzed using the Variance Test for Homogeneity of the Binomial Distribution⁽⁷⁾.

Continuous data, such as body weights, organ weights, percentage of litter reaching a developmental landmark and percent mortality per litter were analyzed as described under the parametric heading of the schematic. Bartlett's Test of Homogeneity of Variances⁽⁸⁾ was used to estimate the probability that the dosage groups had different variances. A non-significant result (p>0.001) indicated that an assumption of homogeneity of variance was not inappropriate, and the data were compared using the Analysis of Variance⁽⁹⁾. If that test was significant ($p\le0.05$), the groups given the test substance were compared with the control group using Dunnett's Test⁽¹⁰⁾. If Bartlett's Test was significant (p>0.001), the Analysis of Variance Test was inappropriate, and the data were analyzed as described under the Nonparametric heading of the schematic. When 75% or fewer of the scores were tied, the Kruskal-Wallis Test⁽¹¹⁾ was used to analyze the data, and in the event of a significant result ($p\le0.05$), Dunn's Method of Multiple Comparisons⁽¹²⁾ was used to compare the groups given the test substance with the control group. When more than 75% of the scores were tied, Fisher's Exact Test⁽¹³⁾ was used to compare the proportion of ties in the dosage group.

Variables with graded count scores, such as litter size were analyzed using the procedures described under the Nonparametric heading of the schematic.

8. RESULTS - F0 GENERATION FEMALE MICE

8.1. Mortality and Clinical Observations (Summaries - Tables 1 and 8; Individual Data - Tables 24 and 31)

Totals of 3, 6, 1 and 3 F0 generation mice were found dead in the 0, 100, 350 and 500 mg/kg/day dosage groups, respectively. Single deaths that occurred in the mid dosage and high dosage groups during the gestation period appear to have been related to administration of the test substance based on the timing of the deaths [days 8 and 13 of gestation (DGs 8 and 13)]. No other mortality related to PFH ammonium salt occurred. The deaths in the control and low dosage group all occurred between days 13 and 16 of lactation (DLs 13 to 16). These deaths and possibly two of the three deaths that occurred in the highest dosage group appeared to be due to the stress of nursing which is known to occur in mice⁽¹¹⁻¹⁵⁾. All unscheduled deaths are described in the following text tables.

Summary Mortality Information							
Dosage (mg/kg/day)	0 (Vehicle)	100	350	500			
Number (N)	20	20	20	20			
Pregnant	19	19	20	18			
Litters Delivered	19	19	19	17			
Found Dead	3	6	1	3			

Group Number/	Mouse	Day of	Mode of		Clinical Observations, Body Weights and Necropsy
Dosage Level	Number	Study	Death	Litter	Observations
					Clinical Observations: Appeared normal
	8314	DL 16	Found Dead	11 live pups	Body Weights : Body weights were unremarkable.
					Necropsy Observations: All tissues appeared normal
					for a moderate degree of autolysis. Clinical Observations: Appeared normal
					Body Weights: Body weights were unremarkable.
I/	8316	DL 16	Found Dead	14 live pups	Necropsy Observations: All tissues appeared normal
0 mg/kg/day					for a moderate degree of autolysis.
					Clinical Observations: Appeared normal
					Body Weights: Body weights were generally
	8328	DL 14	Found Dead	13 live pups	unremarkable.
					Necropsy Observations: All tissues appeared normal
					for a moderate degree of autolysis.
					Clinical Observations: Appeared normal Body Weights: Body weights were generally
	8333	DL 16	Found Dead	14 live pups	unremarkable.
	0000	22.10	I oulla Doua	т.п.е рар	Necropsy Observations: All tissues appeared normal
II/					for a slight degree of autolysis.
100 mg/kg/day					Clinical Observations: Appeared normal
					Body Weights : Body weights were generally
	8343	DL 13	Found Dead	11 live pups	unremarkable.
					Necropsy Observations: All tissues appeared normal
					for a moderate degree of autolysis.
					Clinical Observations: Decreased motor activity, ptosis, mild to moderate dehydration, pale ears, pale
11/					extremities
100 mg/kg/day	8344	DL 14	Found Dead	15 live pups	Body Weights : Lost body weight from DL 11 to 14
(continued)					(9.4 g).
					Necropsy Observations: All tissues appeared normal
					for a moderate degree of autolysis.

Group Number/ Dosage Level	Mouse Number	Day of Study	Mode of Death	Litter	Clinical Observations, Body Weights and Necropsy Observations
	8346	DL 13	Found Dead	13 live pups	Clinical Observations: Appeared normal Body Weights: Lost body weight from DL 11 to 12 (7.1 g). Necropsy Observations: All tissues appeared normal for a moderate degree of autolysis.
	8347	DL 13	Found Dead	17 live pups	Clinical Observations: Appeared normal Body Weights: Body weights were generally unremarkable. Necropsy Observations: All tissues appeared normal for a moderate degree of autolysis.
	8348	DL 13	Found Dead	15 live pups	Clinical Observations: Soft or liquid feces Body Weights: Lost body weight from DL 11 to 12 (8.7 g). Necropsy Observations: All tissues appeared normal for a moderate degree of autolysis.
III/ 350 mg/kg/day	8361	DG 13	Found Dead	14 embryos	Clinical Observations: Dyspnea, decreased motor activity, tremors, ptosis, mild to moderate dehydration, cold to touch, pale ears, red perivaginal substance, pale extremities, scant feces Body Weights: Body weights were unremarkable. Necropsy Observations: All tissues appeared normal.
	8386	DG 8	Found Dead	12 embryos	Clinical Observations: Appeared normal Body Weights: Body weights were unremarkable. Necropsy Observations: All tissues appeared normal for a slight degree of autolysis.
IV/ 500 mg/kg/day	8387	DL 13	Found Dead	14 live pups (4 pups were born alive but found dead)	Clinical Observations: Tachypnea Body Weights: Lost body weight from DL 11 to 12 (6.3 g). Necropsy Observations: All tissues appeared normal for a moderate degree of autolysis.
	8388	DL 13	Found Dead	11 live pups (1 pup was born alive but found dead)	Clinical Observations: Appeared normal Body Weights: Lost body weight from DL 11 to 12 (5.4 g). Necropsy Observations: All tissues appeared normal for a moderate degree of autolysis.

Additionally, Totals of 1, 0, 2 and 6 mice in the 0, 100, 350 and 500 mg/kg/day dosage groups, respectively, were sacrificed due to no surviving pups.

During the gestation period, the only clinical observations considered related to the test substance was slight* excess salivation in 3, 350 mg/kg/day dosage group mice and slight** to moderate salivation in 6, 500 mg/kg/day dosage group mice.

A purple area on the abdomen occurred in 10, 12, 13 and 9 mice in the four respective dosage groups. Abdominal distention occurred in three mice in the 0 and 100 mg/kg/day dosage groups. These observations were considered secondary to the stress of nursing as the sign occurred late in lactation (14-18).

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

All other clinical observations during the gestation and lactation periods, with the exception of those described above for mice that were found dead, were considered unrelated to the test substance because: 1) the incidences were not dosage dependent; and 2) the observations occurred in only one or two mice in a group. These clinical observations included slight/mild dehydration, dyspnea, tachypnea, decreased motor activity, ptosis, a red or dried red perivaginal substance, scant feces, hyperpnea, gasping and rales.

8.2. Body Weight and Body Weight Changes (Figure 1; Summaries - Tables 2 through 5; Individual Data - Tables 25 and 26)

Body weights and body weight gains during the gestation period and body weights during the lactation period were unaffected by dosages of the test substance as high as 500 mg/kg/day. All values were comparable among the four dosage groups and did not differ significantly.

Body weights gains during lactation were significantly reduced ($p \le 0.05$ to $p \le 0.01$) for LDs 0 to 4 in the 350 and 500 mg/kg/day dosage groups compared to the control group value. Although no additional significant differences occurred among the groups for body weight gain during lactation, the average gain during the entire lactation period was reduced in the 500 mg/kg/day dosage group compared to the control group value. Body weight gains from DL 0 to 20 were 97.7%, 110.3% and 64.4% of the control group value.

8.3. Natural Delivery Observations (Summaries - Tables 6 and 7; Individual Data - Tables 27 through 30)

Pregnancy occurred in 19, 19, 20 and 18 of the 20 mated female mice in the 0 (Vehicle), 100, 350 and 500 mg/kg/day dosage groups, respectively. All pregnant dams delivered litters, with the exception of one mouse in each of Groups III and IV that died during gestation, as previously described. All mated mice were pregnant and delivered a litter.

The number of pups dying on PPDs 1 to 4 in the 350 and 500 mg/kg/day dosage groups was significantly increased ($p \le 0.01$) compared to the control group. The number of pups dying on PPD 0 was increased in the 300 mg/kg/day dosage group and significantly increased ($p \le 0.01$) in the 500 mg/kg/day dosage group compared to the control group.

The number of mice with stillborn pups and the number of mice with all pups dying on PPDs 0 to 3 were significantly increased ($p \le 0.01$) in the 500 mg/kg/day dosage group compared to the control group values. The following additional effects occurred in the 500 mg/kg/day dosage group: the average litter size was reduced at birth and throughout the lactation period with a significant reduction ($p \le 0.05$) on PPD 4; and the PPD 4 and 7 viability indices were significantly reduced ($p \le 0.01$) compared to the control group value. The day 7 viability index was significantly reduced ($p \le 0.05$) in the 350 mg/kg/day dosage group. The average number of surviving pups per litters was significantly

reduced ($p \le 0.01$) in the 500 mg/kg/day dosage group for PPDs 4, 7, 14 and 20 compared to the control group values.

Pup body weights in all treated groups were generally lower in the treated groups compared to the control group values. Pup body weights were significantly reduced ($p \le 0.05$ to $p \le 0.01$) on PPD 0 in the 100 mg/kg/day and higher dosage groups compared to the control group value. Statistically significantly reduced pup body weights persisted in the 350 mg/kg/day dosage group through PPD 7 and in the 500 mg/kg/day dosage group through PPD 4. On PPD 20 average pup weights per litter were 89%, 80% and 88% of the control group value. The lack of dosage-dependency can be attributed to the differences in litter size among the groups.

All other natural delivery and litter observations were unaffected by dosages of the test substance as high as 500 mg/kg/day. Values for the numbers of dams delivering litters, the duration of gestation, averages for implantation sites per delivered litter, the gestation index (number of dams with one or more liveborn pups/number of pregnant mice), total litter sizes, lactation index and percent male pups per number of pups sexed per litter, were comparable among the four dosage groups and did not significantly differ.

8.4. Terminal Body Weights, Liver Weights and Ratios (%) of Liver Weight to Terminal Body Weight (Summary - Table 9; Individual Data - Table 32)

Terminal body weights were comparable among the four dosage groups. The absolute weights of the liver and the ratio of the liver weight to the terminal body weight did not differ significantly among the groups.

8.5. Necropsy Observations (Summary - Table 8; Individual Data - Table 31)

Tan areas in the liver occurred in one mouse in the 350 mg/kg/day dosage group and five ** of 20 mice in the 500 mg/kg/day dosage group.

There were no other test substance related necropsy observations. One mouse each in the 0 and 100 mg/kg/day dosage group had a bent sternum proximal to the xiphoid process and one mouse in the 500 mg/kg/day dosage group had intestines that were distended with gas.

41 of 365

^{**} Significantly different from the control group value ($p \le 0.01$).

8.6. Clinical (including Eye Opening) and Necropsy Observations - F1 Generation Pups (Summaries - Tables 10, 11 and 12; Individual Data - Tables 33 through 35)

No clinical observations in the F1 generation pups were attributed to dosages of the test substance as high as 500 mg/kg/day because: 1) the incidences were not dosage-dependent; 2) the observation occurred in only one to three litters; and/or 3) the observation occurred only in the vehicle control group.

These clinical observations included scab, dehydration, tip of tail red or missing, not nursing, not nesting and ungroomed coat.

The average day that 50% of the pups had open eyes was significantly longer ($p \le 0.01$) in the 350 mg/kg/day dosage group compared to the control group value. The lack of a significant difference in the 500 mg/kg/day dosage group may be related to the higher number of early pups deaths and reduced litter size in this group. The percentage of pups per litter with open eyes was significantly reduced ($p \le 0.05$ to $p \le 0.01$) in the 350 and 500 mg/kg/day dosage groups on PPD 14 compared to the control group value.

An increased number of pups in the 500 mg/kg/day dosage group that were found dead or stillborn in the 500 mg/kg/day dosage group had no milk in the stomach. All pups that survived to PPD 20, and were not continued on study appeared normal at necropsy.

8.7. Levels of PFH in Liver Homogenates (APPENDIX 5)

Results of analyses of liver homogenates from 10 F0 generation control group mice were all below the lower limit of quantitation with the exception of mouse 8316 for which a detectable level was found. This level appeared to be the result of cross contamination of the sample during collection and/or processing. This mouse was found dead on LD 17 and the liver was taken at approximately the same time as liver from other early deaths in treated groups was being taken.

In the 100 mg/kg/day dosage group, all liver homogenates analyzed were below the lower limit of quantitation.

In the 350 mg/kg/day dosage group, three of eight samples had analytical results that were quantifiable. The highest level (87.5 ug/mL) occurred in a mouse that was found dead on DG 13. The other mice had much lower levels of PFH but it is interesting that both of these mice were sacrificed early after their litters had died off. These were the only mice in this group that lost their litters.

In the 500 mg/kg/day dosage group five of 16 samples had analytical results that were quantifiable. The highest level (98.4 ug/mL) occurred in a mouse that found dead on day 6 of gestation. The other mice had much lower levels of PFH but each of these mice had

litters that died early. Two samples that were below the lower limit of quantitation were from mice that lost their litters.

Sample "animal no. 8316" was initially analyzed in run 02 which had concentration above the lower limit of detection. This was considered an anomalous sample value as the sample was from a control dosing group and was not expected to have quantifiable concentration. The sample was repeated in duplicate in run 04. Both repeated values were within 20% of each other and the initial value.

9. RESULTS - F1 GENERATION MICE - POSTWEANING

9.1. Mortality, Clinical and Necropsy Observations (Summaries - Tables 13, 14, 20 and 21; Individual Data - Tables 36, 37, 42 and 43)

One male mouse in the 350 mg/kg/day maternal dosage group was found dead on PPD 23. There were no clinical signs noted during the postweaning period. This mouse had the lowest body weight in its group. At necropsy, all tissues appeared normal for a moderate degree of autolysis. This mouse apparently did not thrive postweaning.

All other F1 generation male and female mice survived to scheduled sacrifice.

All clinical observations in the F1 generation male and female mice were considered unrelated to maternal administration of the test substance because: 1) the incidences were not dosage dependent; 2) the observation occurred in only one mouse; and/or 3) the observation is common in this species and strain. These clinical observations were limited to common findings in the tail including constricted, bent, missing or purple.

All F1 generation male mice appeared normal at necropsy. One F1 generation female mouse in the 100 mg/kg/day dosage group had a small left kidney. No other necropsy observations occurred in these mice.

9.2. Body Weights and Body Weight Changes (Figures 2 and 3; Summaries - Tables 15 through 18; Individual Data - Tables 38 and 39)

Body weights and body weight gains of the F1 generation male mice were unaffected by maternal dosages of the test substance as high as 500 mg/kg/day. The only significant difference that occurred among the groups were significantly reduced ($p \le 0.05$) body weights on PPD 21 in the 100 and 350 mg/kg/day dosage groups and increased ($p \le 0.05$) to $p \le 0.01$) body weight gains in the 100 and 350 mg/kg/day dosage group on PPDs 28 to 35 compared to the control group value. No other significant differences occurred among the groups during the postweaning period (PPD 21 to 41).

Body weights were significantly reduced ($p \le 0.05$ to $p \le 0.01$) in the F1 generation female mice on PPDs 21 and 28 in the 100 and 350 mg/kg/day dosage group and on PPDs 35

and 41 (350 mg/kg/day only); and body weights were significantly reduced ($p \le 0.05$) in the 500 mg/kg/day dosage group on PPD 35 compared to the control group values. Body weight gains did not significantly different among the groups for the postweaning period.

9.3. Sexual Maturation (Summary - Table 19; Individual Data - Tables 40 and 41)

Sexual maturation was unaffected by maternal dosages of the test substance as high as 500 mg/kg/day. The average day on which preputial separation or vaginal patency occurred was comparable among the four dosage groups.

9.4. Terminal Body Weights, Liver Weights and Ratios of Liver Weight to Terminal Body Weight (Summaries - Tables 22 and 23; Individual Data - Tables 44 and 45)

Terminal body weights in the F1 generation male mice were comparable among the four groups. The ratio of the liver weight to the terminal body weight was significantly reduced ($p \le 0.05$) in the 500 mg/kg/day dosage group compared to the control group value.

Terminal body weights in the F1 generation female mice were significantly reduced $(p \le 0.05)$ in the 350 mg/kg/day dosage group compared to the control group value. Maternal dosages of the test substance as high as 500 mg/kg/day did not affect the liver weights or the ratio of liver weights to the terminal body weight.

9.5. Levels of PFH in Liver Homogenates (APPENDIX 5)

No detectable level of PFH was found in the liver homogenate from any F1 generation male or female pup.

10. DISCUSSION AND CONCLUSION

Administration of PFH Ammonium Salt to pregnant mice at dosages of 0 (Vehicle), 100, 350 and 500 mg/kg/day resulted in minimal adverse effects. Toxicity was seen only in the highest dose group and included single mortalities, excess salivation and changes in body weight gains during the lactation period in the 350 and 500 mg/kg/day dosage groups. No adverse effects occurred in the maternal mice in the 100 mg/kg/day dosage group compared to the control group values.

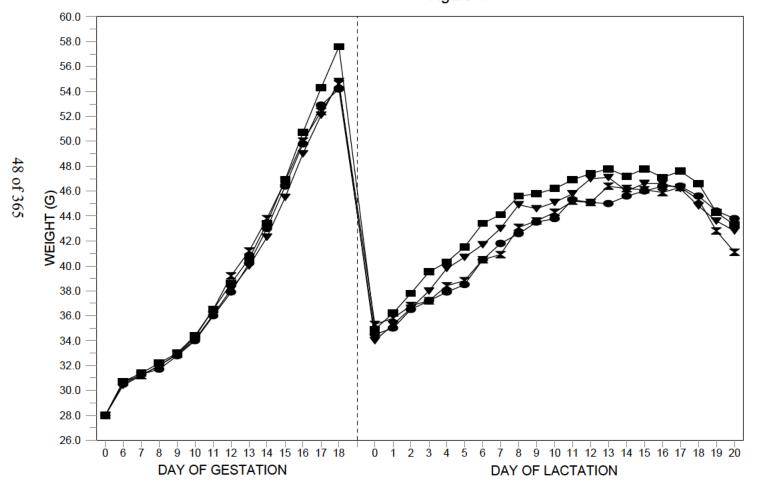
In the F1 generation litters, pup body weights were significantly reduced on PPD 0 in the 100 mg/kg/day and higher dosage groups, but this decrease in body weights persisted only in the 350 and 500 mg/kg/day dosage groups. On PPD 20, average pup weights per litter were 89%, 80% and 88% of the control group value. The lack of dosage-dependency can be attributed to the differences in litter size among the groups.

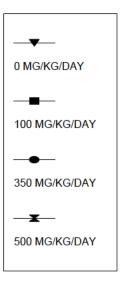
Additional effects, including stillbirths, reductions in viability indices, and delays in physical development in F1 generation mice occurred only in the 350 and 500 mg/kg/day dosage groups.

Levels PFH Ammonium salt in the livers from dams administered the 100 mg/kg/day dosage were all below the lower limit of quantization (0.02 μ g/mL). In the 350 mg/kg/day dosage group, three of eight samples had analytical results that were quantifiable. The highest level (87.5 ug/mL) occurred in a mouse that was found dead on DG 13. The other mice had much lower levels of PFH Ammonium salt, but it is interesting that both of these mice were sacrificed early after their litters had died off. These were the only mice in this group that lost their litters. In the 500 mg/kg/day dosage group five of 16 samples had analytical results that were quantifiable. The highest level (98.4 ug/mL) occurred in a mouse that was found dead on DG 6. The other mice had much lower levels of PFH but each of these mice had litters that died early. Two samples that were below the lower limit of quantization were from mice that lost their litters. Based on these results, the variability in the quantization of PFH ammonium salt in the liver may be due to the time of sampling post the start of dosing.

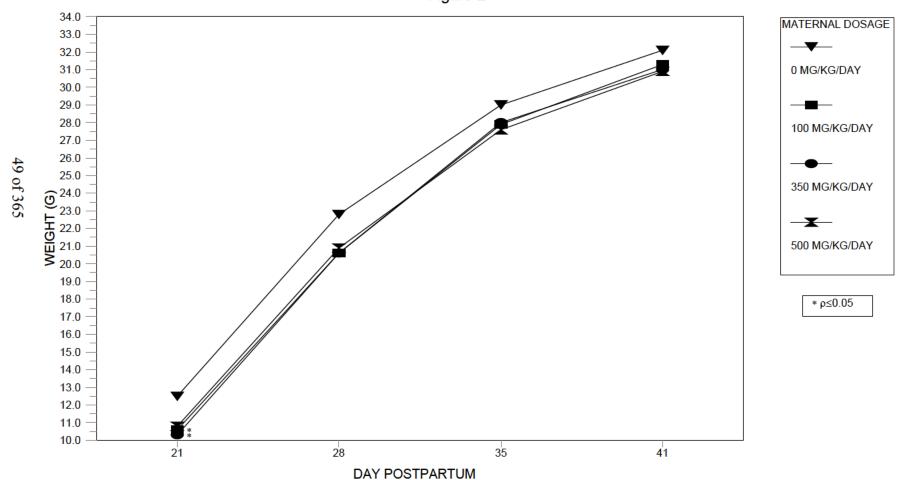
In a previously conducted study with the same study design but at dosage levels of 0 (Vehicle), 7, 35 and 175 mg/kg/day (Protocol UZS00010), no PFH Ammonium salt was found in any liver sample and adverse effects occurred only in the 175 mg/kg/day dosage group (increased number stillborn pups and pups dying day 1 along with a reduction in pup weights on PPD 1, two litters with pups with corneal opacity).

The results from the previous study (Charles River Labs Study No. UZS00010) coincide with the results in this study and indicate a very minimal effect of PFH at 100 mg/kg/day with a clear no-observable-effect-level at 35 mg/kg/day.


On the basis of these data from this study, the maternal no-observable-adverse-effect-level (NOEL) for PFH Ammonium Salt is 100 mg/kg/day. The NOAEL in the F1 generation is below 100 mg/kg/day. None of the effects observed in the pups preweaning persisted into the postweaning period.


11. REFERENCES

- (1) Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Act (FIFRA/TSCA); Good laboratory practice standards; Final Rule 40 C.F.R Part 160/792; August 17, 1989. U.S. Environmental Protection Agency.
- (2) Good laboratory practice standards for toxicological studies on agricultural chemicals. 59-Nousan-No.3850; August 10, 1984. Repealed as 1 October, 1999. Notification 11-Nousan-No.6283. Japan: Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF).
- (3) OECD Principles of good laboratory practices, [C(97)186/Final] (1998); Environmental Health and Safety Division. OECD Environment Directorate.
- (4) Institute of Laboratory Animal Resources Commission on Life Sciences and the National Research Council. *Guide for the care and use of laboratory animals*. Washington (D.C.): National Academy Press; 1996.
- (5) Das KP, Grey BE, Zehr RD et al. Effects of perfluorobutyrate exposure during pregnancy in the mouse. *Toxicol Sci* 2008;105(1):173-81.
- (6) Salewski E. Färbemethode zum makroskopischen nachweis von implantations stellen am uterus der ratte. G [Staining method for macroscopic demonstration of implantation sites in the rat uterus]. *Arch Pathol Exp Pharmakol* 1964;247:367.
- (7) Snedecor GW, Cochran WG. Variance test for homogeneity of the binomial distribution. *Statistical methods*. *6th Ed*. Iowa State University Press, Ames; 1967. p. 240-1.
- (8) Sokal RR, Rohlf FJ. Bartlett's test of homogeneity of variances. *Biometry: the principles and practice of statistics in biological research*. San Francisco (CA): Freeman & Co; 1969. p. 370-1.
- (9) Snedecor GW, Cochran WG. Analysis of variance. *Statistical methods*. 6th Ed. Iowa State University Press, Ames; 1967. p. 258-98.
- (10) Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. *J Am Stat Assoc* 1955;50:1096-121.
- (11) Sokal RR, Rohlf FJ. Kruskal-Wallis test. *Biometry: the principles and practice of statistics in biological research*. San Francisco (CA): Freeman & Co; 1969. p. 388-91.
- (12) Dunn OJ. Multiple comparisons using rank sums. *Technometrics* 1964;6(3):241-52.


- (13) Siegel S. The Fisher's exact probability test. *Nonparametric statistics for the behavioral sciences*. New York (NY): McGraw-Hill Co; 1956. p. 96-105.
- (14) Dagnaes-Hansen, F., Moser, J.M., Smith-John, T., Aarup, M. Sudden death in lacating mice. *Lab Animal*; 2010;205.
- (15) Feinstein, R.E., Morris, W.E., Waldemarson, A.H.Hedenqvist, P., and Lindberg, R. Fatal Acute intestinal pseudoobstruction in mice. *J Am Assoc for Lab Animal Science*. 2008;58-63.
- (16) Krugner-Higby, L., Girard, I., Welter, et al. Clostridial enteropathy in lactating outbred Swiss-derived (ICR) mice. *J Am Assoc for Lab Animal Science*. 2006;80-87.
- (17) Kunstyr, I. Paresis of peristalsis and ileus lead to death in lactating mice. *Laboratory Animals*. 1986;32-35.
- (18) Rollman, C. Olshan, K., and Hammer, J. Abdominal Distension in Lactating Mice. *Lab Animal*. 1998;19.

MATERNAL BODY WEIGHTS - F0 GENERATION FEMALE MICE Figure 1

BODY WEIGHTS - F1 GENERATION MALE MICE Figure 2

BODY WEIGHTS - F1 GENERATION FEMALE MICE Figure 3

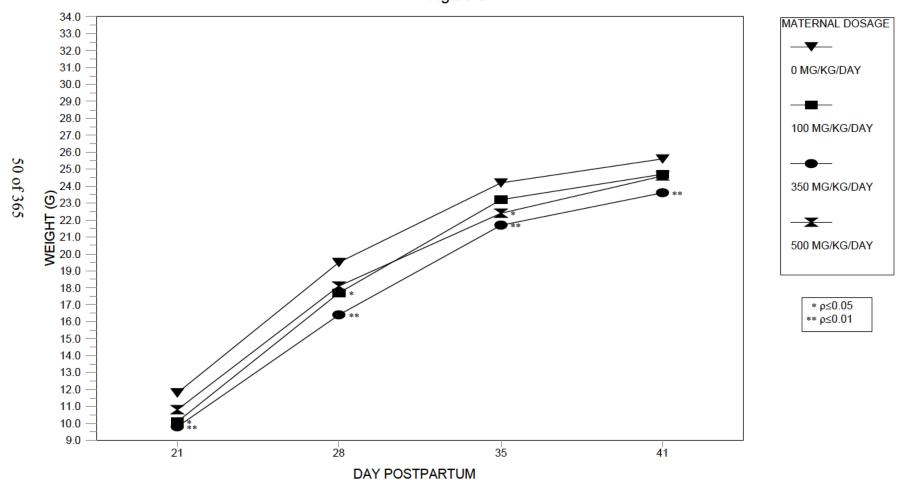


TABLE 1 (PAGE 1): CLINICAL OBSERVATIONS - SUMMARY - F0 GENERATION FEMALE MICE (See footnotes on the last page of this table.)

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100	III 350	IV 500
FOUND DEAD		3b-d	6e-j	1k	3L-n
PRESUMED GESTATION:					
MAXIMUM POSSIBLE INCI	DENCE	266/ 20	264/ 20	253/ 20	266/ 20
EXCESS SALIVATION:	TOTAL	0/ 0	0/ 0	3/ 3	7/ 6**
	SLIGHT	0/ 0	0/ 0	3/ 3*	6/ 5**
	MODERATE	0/ 0	0/ 0	0/ 0	1/ 1
DEHYDRATION: TOTAL		0/ 0	0/ 0	1/ 1	8/ 2
SLIGH	T/MILD	0/ 0	0/ 0	1/ 1k	8/ 2
MODER	ATE	0/ 0	0/ 0	1/ 1k	0/ 0
DYSPNEA		0/ 0	0/ 0	2/ 1k	4/ 2
TACHYPNEA		0/ 0	0/ 0	0/ 0	2/ 2m
DECREASED MOTOR ACT	IVITY	0/ 0	0/ 0	1/ 1k	2/ 1
PTOSIS		0/ 0	0/ 0	1/ 1k	2/ 1
RED OR DRIED RED PE	RIVAGINAL SUBSTANCE	0/ 0	0/ 0	1/ 1k	2/ 1
SCANT FECES		0/ 0	0/ 0	1/ 1k	1/ 1
HYPERPNEA		0/ 0	0/ 0	0/ 0	2/ 1

STATISTICAL ANALYSES OF CLINICAL OBSERVATION DATA WERE RESTRICTED TO THE NUMBER OF MICE WITH OBSERVATIONS. MAXIMUM POSSIBLE INCIDENCE = $(DAYS \times MICE)/NUMBER$ OF MICE EXAMINED PER GROUP N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF MICE WITH OBSERVATION

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

TABLE 1 (PAGE 2): CLINICAL OBSERVATIONS - SUMMARY - F0 GENERATION FEMALE MICE (See footnotes on the last page of this table.)

DOSAGE GROUP DOSAGE (MG/KG/DAY)a	I O	II 100	III 350	IV 500
FOUND DEAD	3b-d	6e-j	1 k	3L-n
PRESUMED GESTATION: (CONT.)				
GASPING	0/ 0	0/ 0	2/ 2	0/ 0
TREMORS	0/ 0	0/ 0	1/ 1k	0/ 0
COLD TO TOUCH	0/ 0	0/ 0	1/ 1k	0/ 0
BOTH EARS: PALE	0/ 0	0/ 0	1/ 1k	0/ 0
PALE EXTREMITIES	0/ 0	0/ 0	1/ 1k	0/ 0
RALES	0/ 0	0/ 0	1/ 1	0/ 0

STATISTICAL ANALYSES OF CLINICAL OBSERVATION DATA WERE RESTRICTED TO THE NUMBER OF MICE WITH OBSERVATIONS. MAXIMUM POSSIBLE INCIDENCE = (DAYS \times MICE)/NUMBER OF MICE EXAMINED PER GROUP N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF MICE WITH OBSERVATION

TABLE 1 (PAGE 3): CLINICAL OBSERVATIONS - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a	I O	II 100	III 350	IV 500
FOUND DEAD	3b-d	6e-j	1k	3L-n
<u>LACTATION</u> :				
MAXIMUM POSSIBLE INCIDENCE	368/ 19	361/ 19	361/ 19	225/ 17
ABDOMINAL AREA: PURPLE	30/ 10	39/ 12	46/ 13	32/ 9
SOFT OR LIQUID FECES	1/ 1	1/ 1j	1/ 1	0/ 0
ABDOMINAL DISTENTION	8/ 3	9/ 3	0/ 0	0/ 0
BOTH EARS: PALE	0/ 0	3/ 2g	0/ 0	0/ 0
HYPERPNEA	2/ 1	2/ 1	0/ 0	0/ 0
DEHYDRATION: TOTAL MILD MODERATE	1/ 1 1/ 1 0/ 0	1/ 1 1/ 1g 1/ 1g	0/ 0 0/ 0 0/ 0	0/ 0 0/ 0 0/ 0
DECREASED MOTOR ACTIVITY	0/ 0	1/ 1g	0/ 0	0/ 0
PTOSIS	0/ 0	1/ 1g	0/ 0	0/ 0
PALE EXTREMITIES	0/ 0	1/ 1g	0/ 0	0/ 0

STATISTICAL ANALYSES OF CLINICAL OBSERVATION DATA WERE RESTRICTED TO THE NUMBER OF MICE WITH OBSERVATIONS. MAXIMUM POSSIBLE INCIDENCE = $(DAYS \times MICE)/NUMBER OF MICE EXAMINED PER GROUP$

N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF MICE WITH OBSERVATION

- a. Dosage occurred on days 6 through 18 of presumed gestation.
- b. Mouse 8314 was found dead on day 16 of lactation.
- c. Mouse 8316 was found dead on day 16 of lactation.
- d. Mouse 8328 was found dead on day 14 of lactation.
- e. Mouse 8333 was found dead on day 16 of lactation.
- f. Mouse 8343 was found dead on day 13 of lactation. q. Mouse 8344 was found dead on day 14 of lactation.
- h. Mouse 8346 was found dead on day 13 of lactation.
- i. Mouse 8347 was found dead on day 13 of lactation.
- j. Mouse 8348 was found dead on day 13 of lactation.
- k. Mouse 8361 was found dead on day 13 of factation.
- L. Mouse 8386 was found dead on day 8 of gestation.
- m. Mouse 8387 was found dead on day 13 of lactation.
- n. Mouse 8388 was found dead on day 13 of lactation.

TABLE 2 (PAGE 1): MATERNAL BODY WEIGHTS - GESTATION - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)	a	I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
PREGNANT	N	19	19	20	18
MATERNAL BODY WEIG	GHT (G)				
DAY 0	MEAN±S.D.	28.0 ± 0.9	28.0 ± 1.0	28.0 ± 0.9	28.0 ± 1.0
DAY 6	MEAN±S.D.	30.4 ± 1.0	30.7 ± 1.2	30.5 ± 1.4	30.7 ± 1.4
DAY 7	MEAN±S.D.	31.2 ± 1.3	31.4 ± 1.3	31.3 ± 1.4	31.2 ± 1.2
DAY 8	MEAN±S.D.	32.0 ± 1.4	32.2 ± 1.6	31.7 ± 1.8	32.0 ± 1.3
DAY 9	MEAN±S.D.	32.9 ± 1.6	33.0 ± 1.8	32.8 ± 2.0	[17]b 32.9 ± 1.7
DAY 10	MEAN±S.D.	34.1 ± 1.8	34.4 ± 1.9	34.0 ± 2.4	[17]b 34.3 ± 2.5
DAY 11	MEAN±S.D.	36.1 ± 2.2	36.5 ± 1.9	36.0 ± 2.6	[17]b 36.5 ± 2.4
DAY 12	MEAN±S.D.	38.1 ± 2.5	38.6 ± 2.1	37.9 ± 3.1	[17]b 39.2 ± 2.8
DAY 13	MEAN±S.D.	40.0 ± 3.2	40.6 ± 2.4	40.2 ± 3.4	[17]b 41.2 ± 3.4
DAY 14	MEAN±S.D.	42.3 ± 3.8	43.4 ± 2.5	[19]b 43.0 ± 4.2	[17]b 43.8 ± 4.5
DAY 15	MEAN±S.D.	45.5 ± 4.9	46.9 ± 2.8	[19]b 46.4 ± 5.2	[17]b 46.8 ± 5.9
DAY 16	MEAN±S.D.	49.0 ± 6.0	50.7 ± 3.1	[19]b 49.8 ± 5.8	[17]b 50.0 ± 6.0
DAY 17	MEAN±S.D.	52.1 ± 6.9	54.3 ± 3.6	[19]b 52.9 ± 6.3	[17]b 52.4 ± 5.8
DAY 18	MEAN±S.D.	54.8 ± 7.9 [18]c	57.6 ± 3.9 [18]c	[19]b 54.2 ± 7.0 [15]b,c	[17]b 54.6 ± 7.7 [15]b,c

DAY = DAY OF GESTATION

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes values for mice that were found dead.

c. Excludes values for mice that were in the process of delivering or had delivered.

TABLE 3 (PAGE 1): MATERNAL BODY WEIGHT CHANGES - GESTATION - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	11 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
PREGNANT	N	19	19	20	18
MATERNAL BODY WEIGHT	CHANGE (G)				
DAYS 0 - 6	MEAN±S.D.	+2.4 ± 0.7	+2.6 ± 0.7	+2.5 ± 1.0	+2.7 ± 0.8
DAYS 6 - 9	MEAN±S.D.	+2.5 ± 1.0	+2.3 ± 0.9	+2.2 ± 1.2	+2.3 ± 0.9
DAYS 9 - 12	MEAN±S.D.	+5.2 ± 1.6	+5.7 ± 0.7	+5.2 ± 2.6	[17]b +6.3 ± 1.6 [17]b
DAYS 12 - 16	MEAN±S.D.	+10.9 ± 3.8	+12.0 ± 1.4	+11.7 ± 3.0	+10.7 ± 4.7 [17]b
DAYS 16 - 18	MEAN±S.D.	+6.1 ± 2.0 [18]c	+6.8 ± 1.1 [18]c	+5.2 ± 1.6 [15]b,c	+4.2 ± 3.8 [15]b,c
DAYS 6 - 18	MEAN±S.D.	+24.4 ± 7.8 [18]c	+27.0 ± 3.1 [18]c	+23.8 ± 6.1 [15]b,c	+23.9 ± 7.5 [15]b,c
DAYS 0 - 18	MEAN±S.D.	+26.7 ± 7.8 [18]c	+29.6 ± 3.6 [18]c	+26.2 ± 6.5 [15]b,c	+26.6 ± 7.6 [15]b,c

DAYS = DAYS OF GESTATION

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes values for mice that were found dead.

c. Excludes values for mice that were in the process of delivering or had delivered.

TABLE 4 (PAGE 1): MATERNAL BODY WEIGHTS - LACTATION - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
PREGNANT	N	19	19	20	18
INCLUDED IN ANALYSE	S N	19	19	19b	17b
DELIVERED A LITTER	N	19	19	19	17
MATERNAL BODY WEIGH	T (G)				
DAY 0	MEAN±S.D.	34.0 ± 1.8	34.9 ± 2.1	34.5 ± 3.0	35.3 ± 3.0
DAY 1	MEAN±S.D.	35.3 ± 2.4	36.2 ± 2.2	35.0 ± 2.4	35.8 ± 2.5
DAY 2	MEAN±S.D.	36.6 ± 3.1	37.8 ± 2.3	36.5 ± 2.7	[13]c 36.8 ± 2.6
DAY 3	MEAN±S.D.	38.0 ± 3.4	39.5 ± 2.6	[17]c 37.2 ± 2.8	[11]c 37.2 ± 2.3
DAY 4	MEAN±S.D.	39.8 ± 3.2	40.3 ± 2.8	[17]c 37.9 ± 3.4	
DAY 5	MEAN±S.D.	[18]c 40.7 ± 2.8 [18]c	41.5 ± 3.4	[17]c 38.5 ± 2.8 [17]c	[11]c 38.8 ± 2.5 [11]c
DAY 6	MEAN±S.D.	41.7 ± 3.6	43.4 ± 3.7	40.5 ± 3.3	40.5 ± 3.4
DAY 7	MEAN±S.D.	43.0 ± 3.7	44.1 ± 3.6	41.8 ± 3.1	40.9 ± 3.2
DAY 8	MEAN±S.D.	[18]c 44.9 ± 3.7	45.6 ± 3.0	[17]c 42.6 ± 3.4	[11]c 43.1 ± 2.8
DAY 9	MEAN±S.D.	[18]c 44.6 ± 3.7	45.8 ± 3.5	[17]c 43.5 ± 3.9	[11]c 43.6 ± 3.0
DAY 10	MEAN±S.D.	[18]c 45.1 ± 3.7	46.2 ± 4.0	[17]c 43.8 ± 3.7	
DAY 11	MEAN±S.D.	[18]c 45.8 ± 4.1	46.9 ± 4.1	[17]c 45.3 ± 4.1	[11]c 45.2 ± 3.2
DAY 12	MEAN±S.D.	[18]c 47.0 ± 3.9 [18]c	47.4 ± 4.6	[17]c 45.1 ± 3.8 [17]c	[11]c 45.1 ± 3.1 [11]c

DAY = DAY OF LACTATION

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes mice that were found dead before delivery.

c. Excludes values for mice that were sacrificed due to no surviving pups or found dead.

TABLE 4 (PAGE 2): MATERNAL BODY WEIGHTS - LACTATION - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
PREGNANT	N	19	19	20	18
INCLUDED IN ANALYSES	N	19	19	19b	17b
DELIVERED A LITTER	N	19	19	19	17
MATERNAL BODY WEIGHT (G)				
DAY 13	MEAN±S.D.	47.1 ± 4.0	47.8 ± 3.7	45.0 ± 4.4	46.4 ± 2.0
DAY 14	MEAN±S.D.		47.2 ± 3.7	45.6 ± 4.0	46.2 ± 2.6
DAY 15	MEAN±S.D.		47.8 ± 3.4		46.1 ± 3.3 [9]c
DAY 16	MEAN±S.D.	46.6 ± 4.4	47.1 ± 3.3	46.4 ± 4.5	45.9 ± 3.3
DAY 17	MEAN±S.D.	46.2 ± 4.4	47.6 ± 3.3	46.4 ± 4.5	46.3 ± 3.4 [9]c
DAY 18	MEAN±S.D.		46.6 ± 3.2		45.3 ± 3.4
DAY 19	MEAN±S.D.	43.6 ± 4.6		44.4 ± 4.7	
DAY 20	MEAN±S.D.			43.8 ± 4.5 [17]c	

DAY = DAY OF LACTATION

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes mice that were found dead before delivery.

c. Excludes values for mice that were sacrificed due to no surviving pups or found dead.

TABLE 5 (PAGE 1): MATERNAL BODY WEIGHT CHANGES - LACTATION - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
PREGNANT	N	19	19	20	18
INCLUDED IN ANALYSES	N	19	19	19b	17b
DELIVERED A LITTER	N	19	19	19	17
MATERNAL BODY WEIGHT (CHANGE (G)				
DAYS 0 - 4	MEAN±S.D.	+5.7 ± 2.1 [18]c	+5.4 ± 1.8	+3.8 ± 2.6*	+2.8 ± 2.0** [11]c
DAYS 4 - 7	MEAN±S.D.	+3.3 ± 2.1 [18]c	+3.8 ± 1.8	+3.9 ± 2.5	+2.4 ± 2.0 [11]c
DAYS 7 - 14	MEAN±S.D.	+2.9 ± 3.3 [17]c	+3.3 ± 1.6 [14]c	+3.7 ± 3.0 [17]c	+5.3 ± 1.7
DAYS 14 - 20	MEAN±S.D.	-2.9 ± 4.7 [15]c	-4.2 ± 2.2 [13]c	-1.8 ± 3.6 [17]c	-5.1 ± 4.5 [9]c
DAYS 0 - 20	MEAN±S.D.	+8.7 ± 2.7 [15]c	+8.5 ± 1.9 [13]c	+9.6 ± 4.8 [17]c	+5.6 ± 4.2 [9]c

DAYS = DAYS OF LACTATION

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes mice that were found dead before delivery.

c. Excludes values for mice that were sacrificed due to no surviving pups or found dead.

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

TABLE 6 (PAGE 1): NATURAL DELIVERY OBSERVATIONS - SUMMARY - F0 GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I O	II 100	III 350	IV 500
MICE ASSIGNED TO NATURAL DELIVERY		20	20	20	20
PREGNANT	N (%)	19(95.0)	19(95.0)	20(100.0)	18(90.0)
INCLUDED IN ANALYSES	N	19	19	19b	17b
DELIVERED A LITTER	N (%)	19(100.0)	19(100.0)	19(100.0)	17(100.0)
DURATION OF GESTATION C M	MEAN±S.D.	19.9 ± 0.6	19.9 ± 0.2	19.9 ± 0.6	20.2 ± 1.1
IMPLANTATION SITES PER DELIVERED LITTER M	N MEAN±S.D.	245 12.9 ± 4.3	276 14.5 ± 1.8	266 14.0 ± 3.6	239 14.0 ± 2.4
DAMS WITH STILLBORN PUPS	N (%)	2(10.5)	0(0.0)	5 (26.3)	7 (41.2) **
DAMS WITH NO LIVEBORN PUPS	S N(%)	0(0.0)	0(0.0)	0(0.0)	1(5.9)
GESTATION INDEX d	% N/N	100.0 19/ 19	100.0 19/ 19	100.0 19/ 19	94.1 16/ 17
DAMS WITH ALL PUPS DYING DAYS 0-3 POSTPARTUM	N (%)	1(5.3)	0(0.0)	2(10.5)	5(31.3)**
DAMS WITH ALL PUPS DYING DAYS 4-20 POSTPARTUM	N(%)	0(0.0)	0(0.0)	0(0.0)	0(0.0)

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes mice that were found dead before delivery.

c. Calculated (in days) as the time elapsed between confirmed mating (arbitrarily defined as day 0 of gestation) and the day the first pup was delivered.

d. Number of mice with live offspring/number of pregnant mice.

^{**} Significantly different from the control group value (p \leq 0.01).

TABLE 7 (PAGE 1): LITTER OBSERVATIONS (NATURALLY DELIVERED PUPS) - SUMMARY - F1 GENERATION LITTERS

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100	III 350	IV 500
DELIVERED LITTERS WITH ONE OR MORE LIVEBORN PUR	PS N	19	19	19	16
PUPS DELIVERED (TOTAL)		221 11.6 ± 4.2	250 13.2 ± 1.6		177 11.1 ± 2.4
LIVEBORN		11.4 ± 4.5 217(98.2)			
STILLBORN		0.2 ± 0.7 4(1.8)			
UNKNOWN VITAL STATUS	S b N	0	0	8	11
PUPS FOUND DEAD OR PRESU	JMED CANNIBALI	ZED			
DAYS 1- 4 DAYS 5- 7	N/N(%) N/N(%) N/N(%)	0/217(0.0) 2/217(0.9) 1/215(0.5) 0/214(0.0) 0/214(0.0)	3/250(1.2) 1/247(0.4) 1/244(0.4)c	3/232(1.3) 25/229(10.9)** 3/204(1.5) 3/201(1.5) 0/198(0.0)	20/129(15.5)** 0/109(0.0) 0/109(0.0)
DAY 4 VIABILITY INDEX d	% N/N		98.8 247/250	87.9 204/232	
DAY 7 VIABILITY INDEX e	% N/N		98.4 246/250	86.6* 201/232	
LACTATION INDEX f	% N/N		98.2c 213/217c		100.0 109/109

DAY(S) = DAY(S) POSTPARTUM

a. Dosage occurred on days 6 through 18 of gestation.

b. Maternal cannibalization or autolysis precluded identification of vital status at birth.

c. Excludes mortality of pups that remained on study after dam was found dead.

d. Number of live pups on day 4 postpartum/number of liveborn pups on day 0 postpartum.

e. Number of live pups on day 7 postpartum/number of liveborn pups on day 0 postpartum.

f. Number of live pups on day 20 (weaning) postpartum/number of live pups on day 4 postpartum.

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

TABLE 7 (PAGE 2): LITTER OBSERVATIONS (NATURALLY DELIVERED PUPS) - SUMMARY - F1 GENERATION LITTERS

DOSAGE GROUP DOSAGE (MG/KG/DAY) a	I 0	II 100	III 350	IV 500
DELIVERED LITTERS ONE OR MORE LIVEB	WITH ORN PUPS N	19	19	19	16
SURVIVING PUPS/LI	TTER b				
DAY 0c	MEAN±S.D.	11.4 ± 4.5	13.2 ± 1.6	12.2 ± 3.4	9.4 ± 3.9
DAY 4	MEAN±S.D.	11.3 ± 4.6	13.0 ± 1.7	10.7 ± 5.1	6.8 ± 5.0**
DAY 7	MEAN±S.D.	11.3 ± 4.6	12.9 ± 1.6	10.6 ± 5.0	6.8 ± 5.0**
DAY 14	MEAN±S.D.	11.3 ± 4.6		10.4 ± 4.9	6.8 ± 5.0**
DAY 20 PERCENT MALE PUPS NUMBER OF PUPS SE	PER	11.3 ± 4.6	[15]d 12.3 ± 1.2 [15]d	10.4 ± 4.9	6.8 ± 5.0**
DAY 0c	MEAN±S.D.	45.8 ± 18.6	48.8 ± 10.5	55.4 ± 16.2	44.0 ± 17.3
DAY 4	MEAN±S.D.	48.6 ± 15.2	49.5 ± 11.1	56.1 ± 16.7	47.6 ± 11.3
DAY 7	MEAN±S.D.	[18]e 48.3 ± 15.3	49.2 ± 12.0	[17]e 56.3 ± 16.4	[11]e 47.6 ± 11.3
DAY 14	MEAN±S.D.	[18]e 48.3 ± 15.3	51.7 ± 9.5	[17]e 56.0 ± 16.5	[11]e 47.6 ± 11.3
DAY 20	MEAN±S.D.	[18]e 48.3 ± 15.3 [18]e	[15]d 52.3 ± 9.7 [15]d	[17]e 56.0 ± 16.5 [17]e	[11]e 47.6 ± 11.3 [11]e

DAY = DAY POSTPARTUM

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Average number of live pups per litter, including litters with no surviving pups.

c. Includes liveborn pups and pups that died before weighing on day 0 postpartum.

d. Excludes litters with mortality of pups that remained on study after dam was found dead.

e. Excludes values for litters that had no surviving pups.

^{**} Significantly different from the control group value (p \le 0.01).

TABLE 7 (PAGE 3): LITTER OBSERVATIONS (NATURALLY DELIVERED PUPS) - SUMMARY - F1 GENERATION LITTERS

DOSAGE GROUP DOSAGE (MG/KG/DAY)) a	I 0	II 100	III 350	IV 500
DELIVERED LITTERS WITH ONE OR MORE LIVEBORN PUPS N		19	19	19	16
LIVE LITTER SIZE A	AT WEIGHING				
DAY 0	MEAN±S.D.	11.4 ± 4.5	13.2 ± 1.6	12.0 ± 3.5	9.9 ± 2.9 [13]b
DAY 4	MEAN±S.D.	11.9 ± 3.8 [18]b	13.0 ± 1.7	12.0 ± 3.6 [17]b	9.9 ± 2.0* [11]b
DAY 7	MEAN±S.D.	11.9 ± 3.8 [18]b	12.9 ± 1.6	11.8 ± 3.6 [17]b	9.9 ± 2.0 [11]b
DAY 14	MEAN±S.D.	11.9 ± 3.8 [18]b	12.4 ± 1.4 [15] c	11.6 ± 3.4 [17]b	9.9 ± 2.0 [11]b
DAY 20	MEAN±S.D.	11.9 ± 3.8 [18]b	12.3 ± 1.2 [15]c	11.6 ± 3.4 [17]b	9.9 ± 2.0 [11]b
PUP WEIGHT/LITTER	(GRAMS)				
DAY 0	MEAN±S.D.	1.6 ± 0.2	1.5 ± 0.1*	1.4 ± 0.2**	1.4 ± 0.2**
DAY 4	MEAN±S.D.	3.0 ± 0.4 [18]b	2.8 ± 0.2	2.2 ± 0.6** [17]b	2.4 ± 0.5** [11]b
DAY 7	MEAN±S.D.	4.4 ± 0.8 [18]b	4.1 ± 0.4	3.6 ± 1.0** [17]b	3.9 ± 0.8 [11]b
DAY 14	MEAN±S.D.	7.4 ± 1.9 [18]b	6.8 ± 0.8 [15]c	6.4 ± 1.4 [17]b	6.8 ± 1.1 [11]b
DAY 20	MEAN±S.D.	11.0 ± 3.0 [18]b	9.8 ± 1.5 [15]c	8.8 ± 2.7 [17]b	9.7 ± 2.0 [11]b

DAY = DAY POSTPARTUM

^{[] =} NUMBER OF VALUES AVERAGED

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes values for litters that had no surviving pups.

c. Excludes litters with mortality of pups that remained on study after dam was found dead.

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

TABLE 8 (PAGE 1): NECROPSY OBSERVATIONS - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100	III 350	IV 500
MICE EXAMINED b	N	20	20	20	20
FOUND DEAD	N	3с-е	6f-k	1L	3m-o
APPEARED NORMAL	N	19	19	19	14**
STERNUM: BENT PROXIMAL TO XIPHOID PROCESS	N	1	1	0	0
LIVER: LOBE(S), TAN AREA(S)	N	0	0	1	5**
INTESTINES: DISTENDED WITH GAS	N	0	0	0	1

- a. Dosage occurred on days 6 through 18 of presumed gestation.
- b. Refer to the individual clinical observations table (Table 24) for external observations confirmed at necropsy.
- c. Mouse 8314 was found dead on day 16 of lactation.
- d. Mouse 8316 was found dead on day 16 of lactation.
- e. Mouse 8328 was found dead on day 14 of lactation.
- f. Mouse 8333 was found dead on day 16 of lactation.
- g. Mouse 8343 was found dead on day 13 of lactation.
- h. Mouse 8344 was found dead on day 14 of lactation.
- i. Mouse 8346 was found dead on day 13 of lactation.
- j. Mouse 8347 was found dead on day 13 of lactation.
- k. Mouse 8348 was found dead on day 13 of lactation.
- L. Mouse 8361 was found dead on day 13 of gestation. m. Mouse 8386 was found dead on day 8 of gestation.
- n. Mouse 8387 was found dead on day 13 of lactation.
- o. Mouse 8388 was found dead on day 13 of lactation.
- ** Significantly different from the control group value ($p \le 0.01$).

TABLE 9 (PAGE 1): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - SUMMARY - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I O	II 100	III 350	IV 500
MICE TESTED	N	10	12	8	16
PREGNANT	N	9	11	8	14
INCLUDED IN ANALYSES	N	5b	5b	5b	5b
TERMINAL BODY WEIGHT	MEAN±S.D.	43.8 ± 2.8	43.1 ± 3.1	45.7 ± 4.4	40.1 ± 3.6
LIVER	MEAN±S.D.	3.124 ± 0.252	3.200 ± 0.340	3.272 ± 0.321	2.866 ± 0.157
LIVER (%)	MEAN±S.D.	7.136 ± 0.515	7.438 ± 0.685	7.178 ± 0.572	7.188 ± 0.772

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

RATIOS (%) = (LIVER WEIGHT/TERMINAL BODY WEIGHT) X 100.

a. Dosage occurred on days 6 through 18 of gestation.

b. Excludes values for mice that were sacrificed due to no surviving pups or found dead.

TABLE 10 (PAGE 1): CLINICAL OBSERVATIONS FROM BIRTH TO DAY 20 POSTPARTUM - SUMMARY - F1 GENERATION PUPS

MATERNAL DOSAGI	E GROUP		I	II	III	IV			
MATERNAL DOSAGE	E (MG/KG/DAY)		0	100	350	500			
LITTERS EXAMIN	ED (N)		19	19	19	17			
TOTAL FREQUENCY (DAYS X PUPS)/LITTERS WITH OBSERVATIONS a,b									
TAIL OR RIGI	HT HINDLIMB OR								
LEFT SIDE O	F BACK, SCAB	N/N	1/1	0/0	2/1	2/1			
DEHYDRATION		N/N	0/0	1/1	7/4	1/1			
	MILD	N/N	0/0	1/1	6/3	0/0			
	MODERATE	N/N	0/0	0/0	1/1	1/1			
TIP OF TAIL	MICCINC	N/N	0/0	0/0	8/2	0/0			
TIP OF TAIL	MISSING	N/N	0/0	0/0	8/2	0/0			
TIP OF TAIL	RED	N/N	0/0	6/1	7/1	0/0			
NOT NURSING		N/N	0/0	0/0	11/1	0/0			
NOT NESTING		N/N	0/0	0/0	11/1	0/0			
				- 4-	- 4-	- 1-			
UNGROOMED CO	OAT	N/N	16/1	0/0	0/0	0/0			

a. Tabulation restricted to adverse observations; all other pups appeared normal.

b. Excludes clinical observations of pups that remained on study after dam was found dead.

TABLE 11 (PAGE 1): EYE OPENING BY LITTER - SUMMARY - F1 GENERATION LITTERS

DOSAGE GROUP DOSAGE (MG/KG/DAY)a		I 0	II 100		III 350	IV 500
LITTERS DELIVERED	N	19	19		19	17
LITTERS TESTED	N	18b	19		17b	11b
PERCENTAGE OF PUPS MI	EETING CRITERION					
DAY 10	MEAN±S.D.	0.4 ± 1.7	0.4 ±	1.5	0.5 ± 2.2	0.0 ± 0.0
DAY 11	MEAN±S.D.	0.4 ± 1.7	0.4 \pm	1.5	0.5 ± 2.2	0.0 ± 0.0
DAY 12	MEAN±S.D.	6.8 ± 23.4	0.8 ±	2.4	1.1 ± 3.0	1.3 ± 4.3
DAY 13	MEAN±S.D.	31.7 ± 37.9	14.0 ±	19.2	13.2 ± 25.8	14.2 ± 29.4
DAY 14	MEAN±S.D.	82.5 ± 24.4	68.6 ±	34.9	42.0 ± 39.5**	50.2 ± 38.0*
DAY 15	MEAN±S.D.	98.4 ± 3.7	88.2 ±	25.6	76.1 ± 37.8	73.4 ± 42.4
DAY 16	MEAN±S.D.	100.0 ± 0.0	99.2 ±	3.3	91.1 ± 22.7	99.2 ± 2.5
DAY 17	MEAN±S.D.	100.0 ± 0.0	100.0 ±	0.0	100.0 ± 0.0	100.0 ± 0.0
CRITERION DAY c	MEAN±S.D.	13.8 ± 0.7	14.2 ±	0.8	14.9 ± 1.1**	14.5 ± 1.0

DAY = DAY POSTPARTUM

- a. Dosage occurred on days 6 through 18 of gestation.
- b. Excludes values for litters that had no surviving pups at time of testing.
- c. The average day postpartum that at least 50% of the pups had the developmental measure present.
- * Significantly different from the control group value $(p \le 0.05)$.
- ** Significantly different from the control group value ($p \le 0.01$).

TABLE 12 (PAGE 1): NECROPSY OBSERVATIONS - SUMMARY - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DA	Y)	I O	II 100	III 350	IV 500
LITTERS EVALUATED	N	19	19	19	17
TOTAL PUPS STILLBORN					
OR FOUND DEAD a,b	N	3	1	9	32
STILLBORN	N	3	0	4	10
FOUND DEAD	N	0	1	5	22
NO MILK IN STOMACH c	N (%)		0(0.0)	0(0.0)	11(50.0)
APPEARED NORMAL	N(%)	3 (100.0)	1(100.0)	9(100.0)	21 (65.6)
PUPS SACRIFICED AND NECRO	PSIED ON DAY	20 POSTPARTUM			
LITTERS EVALUATED	N	18	19	17	11
PUPS EVALUATED	N	174	173	158	69
APPEARED NORMAL					
	N(%)	18(100.0)	19(100.0)	17(100.0)	11(100.0)
PUP INCIDENCE			173(100.0)		69(100.0)

a. Restricted to pups in which complete necropsies were performed. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation.

b. Excludes mortality of pups that remained on study after dam was found dead.

c. Analysis restricted to pups found dead and necropsied.

TABLE 13 (PAGE 1): CLINICAL OBSERVATIONS - SUMMARY - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)	I O	II 100	III 350	IV 500
MAXIMUM POSSIBLE INCIDENCE	420/ 20	420/ 20	402/ 20	420/ 20
FOUND DEAD	0	0	1a	0
TIP OF TAIL: CONSTRICTED	0/ 0	0/ 0	0/ 0	14/ 1
TAIL BENT	0/ 0	0/ 0	0/ 0	4/ 1
TIP OF TAIL MISSING	0/ 0	0/ 0	0/ 0	4/ 1
TIP OF TAIL: PURPLE	0/ 0	0/ 0	0/ 0	3/ 1

STATISTICAL ANALYSES OF CLINICAL OBSERVATION DATA WERE RESTRICTED TO THE NUMBER OF MICE WITH OBSERVATIONS. MAXIMUM POSSIBLE INCIDENCE = (DAYS x MICE)/NUMBER OF MICE EXAMINED PER GROUP N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF MICE WITH OBSERVATION

a. Mouse 9049 was found dead on day 23 postpartum.

TABLE 14 (PAGE 1): CLINICAL OBSERVATIONS - SUMMARY - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)	I O	II 100	III 350	IV 500
MAXIMUM POSSIBLE INCIDENCE	420/ 20	420/ 20	420/ 20	420/ 20
MORTALITY	0	0	0	0
TAIL BENT	21/ 1	0/ 0	0/ 0	0/ 0

STATISTICAL ANALYSES OF CLINICAL OBSERVATION DATA WERE RESTRICTED TO THE NUMBER OF MICE WITH OBSERVATIONS. MAXIMUM POSSIBLE INCIDENCE = (DAYS \times MICE)/NUMBER OF MICE EXAMINED PER GROUP N/N = TOTAL NUMBER OF OBSERVATIONS/NUMBER OF MICE WITH OBSERVATION

TABLE 15 (PAGE 1): BODY WEIGHTS - SUMMARY - F1 GENERATION MALE MICE

MATERNAL DOSAGE GRO MATERNAL DOSAGE (MG		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
BODY WEIGHT (G)					
DAY 21	MEAN±S.D.	12.5 ± 2.7	10.6 ± 2.2*	10.3 ± 2.8*	10.8 ± 2.4
DAY 28	MEAN±S.D.	22.8 ± 3.4	20.6 ± 3.4	20.6 ± 3.8 [19]a	20.9 ± 3.7
DAY 35	MEAN±S.D.	29.0 ± 2.7	27.9 ± 2.8	28.0 ± 2.6	27.6 ± 2.7
DAY 41	MEAN±S.D.	32.1 ± 3.0	31.3 ± 2.6	[19]a 31.0 ± 2.5 [19]a	30.9 ± 2.7

DAY = DAY POSTPARTUM

^{[] =} NUMBER OF VALUES AVERAGED

a. Excludes values for mouse 9049, which was found dead on day 23 postpartum.

^{*} Significantly different from the control group value ($p \le 0.05$).

TABLE 16 (PAGE 1): BODY WEIGHT CHANGES - SUMMARY - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/F		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
BODY WEIGHT CHANGE (G)				
DAYS 21 - 28	MEAN±S.D.	+10.4 ± 1.8	+10.0 ± 1.3	+10.1 ± 1.3 [19]a	+10.1 ± 1.3
DAYS 28 - 35	MEAN±S.D.	+6.1 ± 1.6	+7.2 ± 1.2*	+7.4 ± 1.7** [19]a	+6.7 ± 1.4
DAYS 35 - 41	MEAN±S.D.	+3.1 ± 1.4	+3.4 ± 1.1	+3.0 ± 0.8	+3.3 ± 1.3
DAYS 21 - 41	MEAN±S.D.	+19.6 ± 2.3	+20.7 ± 1.6	+20.5 ± 1.7 [19]a	+20.1 ± 1.6

DAYS = DAYS POSTPARTUM

^{[] =} NUMBER OF VALUES AVERAGED

a. Excludes values for mouse 9049, which was found dead on day 23 postpartum.

^{*} Significantly different from the control group value (p \le 0.05). ** Significantly different from the control group value (p \le 0.01).

TABLE 17 (PAGE 1): BODY WEIGHTS - SUMMARY - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
BODY WEIGHT (G)					
DAY 21	MEAN±S.D.	11.8 ± 2.4	10.1 ± 2.2*	9.8 ± 1.6**	10.8 ± 1.8
DAY 28	MEAN±S.D.	19.5 ± 2.4	17.7 ± 2.6*	16.4 ± 3.1**	18.1 ± 2.3
DAY 35	MEAN±S.D.	24.2 ± 1.8	23.2 ± 2.5	21.7 ± 2.8**	22.4 ± 1.5*
DAY 41	MEAN±S.D.	25.6 ± 2.0	24.7 ± 1.9	23.6 ± 2.0**	24.6 ± 1.7

DAY = DAY POSTPARTUM

^{*} Significantly different from the control group value ($p \le 0.05$).

^{**} Significantly different from the control group value ($p \le 0.01$).

TABLE 18 (PAGE 1): BODY WEIGHT CHANGES - SUMMARY - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/K		I 0	II 100	III 350	IV 500
MICE TESTED	N	20	20	20	20
BODY WEIGHT CHANGE (G)				
DAYS 21 - 28	MEAN±S.D.	+7.7 ± 1.4	+7.6 ± 0.8	+6.7 ± 2.3	+7.3 ± 0.9
DAYS 28 - 35	MEAN±S.D.	+4.7 ± 1.3	+5.5 ± 1.2	+5.3 ± 1.2	+4.3 ± 1.3
DAYS 35 - 41	MEAN±S.D.	+1.4 ± 0.9	+1.5 ± 1.0	+1.9 ± 1.4	+2.2 ± 0.7
DAYS 21 - 41	MEAN±S.D.	+13.8 ± 1.2	+14.6 ± 1.6	+13.8 ± 1.6	+13.8 ± 1.5

DAYS = DAYS POSTPARTUM

TABLE 19 (PAGE 1): SEXUAL MATURATION - SUMMARY - F1 GENERATION MICE

MATERNAL DOSAGE GROUP		I	II	III	IV
MATERNAL DOSAGE (MG/KG/	DAY)	0	100	350	500
MALE MICE	N	20	20	19a	20
PREPUTIAL					
SEPARATION b	MEAN±S.D.	29.4 ± 1.9 [18]c	29.8 ± 2.2	29.3 ± 2.3	29.4 ± 1.7
BODY WEIGHT AT					
SEPARATION (G)d	MEAN±S.D.	24.49 ± 3.03 [18]c	23.22 ± 2.11	22.40 ± 2.27	22.80 ± 2.68
FEMALE MICE	N	20	20	20	20
VAGINAL PATENCY e	MEAN±S.D.	26.8 ± 2.0 [19]c	27.5 ± 1.1 [19]c	27.6 ± 2.0 [18]c,f	27.5 ± 2.1
BODY WEIGHT AT		• •	• •		
VAGINAL PATENCY (G)g	MEAN±S.D.	18.08 ± 1.44 [19]c	17.38 ± 2.82 [19]c	16.31 ± 1.70 [18]c,f	17.57 ± 2.20

^{[] =} NUMBER OF VALUES AVERAGED

a. Excludes values for mouse 9049, which was found dead on day 23 postpartum.

b. Average day postpartum that the prepuce was observed to be separated.

c. Excludes mice for which the exact day of maturity could not be determined.

d. Average body weight on day prepuce was first observed to be separated.

e. Average day postpartum that the vagina was observed to be patent.

f. Excludes mouse 9130, which had not reached sexual maturity by day 41 postpartum, the day of scheduled sacrifice.

g. Average body weight on day vagina was first observed to be patent.

TABLE 20 (PAGE 1): NECROPSY OBSERVATIONS - SUMMARY - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		I 0	II 100	III 350	IV 500
MICE EXAMINED a	N	20	20	20	20
FOUND DEAD	N	0	0	1b	0
APPEARED NORMAL	N	20	20	20	20

a. Refer to the individual clinical observations table (Table 36) for external observations confirmed at necropsy.

b. Mouse 9049 was found dead on day 23 postpartum.

TABLE 21 (PAGE 1): NECROPSY OBSERVATIONS - SUMMARY - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		I O	II 100	III 350	IV 500
MICE EXAMINED a	N	20	20	20	20
MORTALITY	N	0	0	0	0
APPEARED NORMAL	N	20	19	20	20
KIDNEYS: LEFT SMALL	N	0	1	0	0

a. Refer to the individual clinical observations table (Table 37) for external observations confirmed at necropsy.

TABLE 22 (PAGE 1): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - SUMMARY - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/	/DAY)	I O	II 100	III 350	IV 500
MICE TESTED	N	5	5	6	5
INCLUDED IN ANALYSES	N	5	5	5a	5
TERMINAL BODY WEIGHT	MEAN±S.D.	30.9 ± 2.3	31.3 ± 3.4	30.9 ± 1.1	30.1 ± 2.0
LIVER	MEAN±S.D.	2.110 ± 0.140	2.121 ± 0.254	2.220 ± 0.126	1.930 ± 0.155
LIVER (%)	MEAN±S.D.	6.830 ± 0.341	6.782 ± 0.277	7.192 ± 0.251	6.412 ± 0.267*

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

RATIOS (%) = (LIVER WEIGHT/TERMINAL BODY WEIGHT) X 100.

a. Excludes values for mouse 9049, which was found dead on day 23 postpartum.

^{*} Significantly different from the control group value ($p \le 0.05$).

TABLE 23 (PAGE 1): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - SUMMARY - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG,	/DAY)	I O	II 100	III 350	IV 500
MICE TESTED	N	5	5	5	5
TERMINAL BODY WEIGHT	MEAN±S.D.	25.4 ± 1.4	26.1 ± 1.9	22.8 ± 1.2*	25.4 ± 1.4
LIVER	MEAN±S.D.	1.536 ± 0.104	1.549 ± 0.168	1.457 ± 0.174	1.569 ± 0.080
LIVER (%)	MEAN±S.D.	6.056 ± 0.232	5.928 ± 0.239	6.392 ± 0.522	6.180 ± 0.395

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

RATIOS (%) = (LIVER WEIGHT/TERMINAL BODY WEIGHT) X 100.

^{*} Significantly different from the control group value ($p \le 0.05$).

TABLE 24 (PAGE 1): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GROUP I CONTROL 0 MG/KG/DAY	
8311 DL(16-19) ABDOMINAL AREA: PURPLE 8312 DL(18-19) ABDOMINAL AREA: PURPLE 8313 NO ADVERSE FINDINGS 8314 DL(16) FOUND DEAD 8315 NO ADVERSE FINDINGS 8316 DL(16) FOUND DEAD 8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16-19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8311 DL(16-19) ABDOMINAL AREA: PURPLE 8312 DL(18-19) ABDOMINAL AREA: PURPLE 8313 NO ADVERSE FINDINGS 8314 DL(16) FOUND DEAD 8315 NO ADVERSE FINDINGS 8316 DL(16) FOUND DEAD 8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16-19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8313 NO ADVERSE FINDINGS 8314 DL(16) FOUND DEAD 8315 NO ADVERSE FINDINGS 8316 DL(16) FOUND DEAD 8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16- 19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8314 DL(16) FOUND DEAD 8315 NO ADVERSE FINDINGS 8316 DL(16) FOUND DEAD 8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16- 19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8315 NO ADVERSE FINDINGS 8316 DL(16) FOUND DEAD 8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16- 19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8316 DL(16) FOUND DEAD 8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16- 19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8317 NO ADVERSE FINDINGS 8318 NO ADVERSE FINDINGS 8319 DL(16-19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8318 NO ADVERSE FINDINGS 8319 DL(16-19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
8319 DL(16-19) ABDOMINAL AREA: PURPLE 8320 NO ADVERSE FINDINGS	
NO ADVERSE FINDINGS	
8321 NO ADVERSE FINDINGS	
8322 DL(18- 19) ABDOMINAL AREA: PURPLE	
8323 DL(16) SOFT OR LIQUID FECES	
DL(17- 18) ABDOMINAL AREA: PURPLE	
DL(19) DEHYDRATION - MILD	
DL(19) ABDOMINAL DISTENTION - SLIGHT	
8324 DL(16-18) ABDOMINAL AREA: PURPLE	
DL(19) ABDOMINAL DISTENTION - SLIGHT	
8325 DL(16-18) ABDOMINAL AREA: PURPLE	
8326 DL(14-17) ABDOMINAL AREA: PURPLE	
8327 DL(15- 16) HYPERPNEA	
DL(15- 17) ABDOMINAL AREA: PURPLE	
DL(15- 20) ABDOMINAL DISTENTION - MODERATE	
8328 DL(14) FOUND DEAD	
8329 DL(3) SACRIFICED DUE TO NO SURVIVING PUPS	
8330 DL(13-15) ABDOMINAL AREA: PURPLE	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

TABLE 24 (PAGE 2): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GR		LOW DOSAGE 100 MG/KG/DAY
MOUSE #		DESCRIPTION
8331		
		ABDOMINAL DISTENTION - SLIGHT
	DL(19- 20)	
8332	DL(18- 19)	ABDOMINAL AREA: PURPLE
8333	DL(16)	FOUND DEAD
8334	DL(17- 19)	ABDOMINAL AREA: PURPLE
8335	DL(16- 19)	ABDOMINAL AREA: PURPLE
8336	DL(16- 19)	ABDOMINAL AREA: PURPLE
	DL(17- 20)	ABDOMINAL DISTENTION - SLIGHT
8337		NO ADVERSE FINDINGS
8338	DL(17- 19)	
8339	DL(15- 18)	ABDOMINAL AREA: PURPLE
8340	DL(15- 18)	ABDOMINAL AREA: PURPLE
	DL(19)	ABDOMINAL DISTENTION - SLIGHT
8341	DL(16- 18)	ABDOMINAL AREA: PURPLE
8342	DL(17)	ABDOMINAL AREA: PURPLE
8343	DL(13)	FOUND DEAD
8344	DL(13)	DECREASED MOTOR ACTIVITY
	DL(13)	PTOSIS
	DL(13)	DEHYDRATION - MILD
	DL(13)	
	DL(13)	
	DL(13)	DEHYDRATION - MODERATE a
0045	DL(14)	FOUND DEAD
8345	PT (10)	NO ADVERSE FINDINGS
8346	DL(13)	FOUND DEAD
8347	DL(13)	FOUND DEAD
8348	DL(12)	SOFT OR LIQUID FECES
0240	DL(13)	FOUND DEAD
8349	DL(13- 15)	ABDOMINAL AREA: PURPLE
8350	DL(11- 12)	BOTH EARS: PALE
	DL(12- 15)	ABDOMINAL AREA: PURPLE

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

a. Observation confirmed at necropsy.

TABLE 24 (PAGE 3): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GR		MIDDLE DOSAGE 350 MG/KG/DAY	
MOUSE #		DESCRIPTION	
	DL(18- 19)	ABDOMINAL AREA: PURPLE	
8352	DL(17- 19)	ABDOMINAL AREA: PURPLE	
8353		NO ADVERSE FINDINGS	
8354	DG (17)	EXCESS SALIVATION - SLIGHT	
0255	DL(1)	SACRIFICED DUE TO NO SURVIVING PUPS	
8355	DL(16-18)	ABDOMINAL AREA: PURPLE	
8356 8357	DL(15- 18)	ABDOMINAL AREA: PURPLE NO ADVERSE FINDINGS	
8358	DL(1)	SACRIFICED DUE TO NO SURVIVING PUPS	
8359	DL(15- 18)	ABDOMINAL AREA: PURPLE	
8360	DL(15- 18)	ABDOMINAL AREA: FURFLE ABDOMINAL AREA: PURPLE	
8361	DG (11- 12)	DYSPNEA	
0001	DG (12)	DECREASED MOTOR ACTIVITY	
	DG (12)	TREMORS	
	DG (12)	PTOSIS	
	DG (12)	DEHYDRATION - MILD	
	DG(12)	COLD TO TOUCH	
	DG(12)	BOTH EARS: PALE	
	DG(12)	DEHYDRATION - MODERATE a	
	DG(12)	RED PERIVAGINAL SUBSTANCE a	
	DG(12)	PALE EXTREMITIES	
	DG(12)	SCANT FECES	
	DG(13)	FOUND DEAD	
8362	DG (13)	GASPING	
	DG (13)	RALES	
0262	DL(16- 19)	ABDOMINAL AREA: PURPLE	
8363 8364		NO ADVERSE FINDINGS NO ADVERSE FINDINGS	
8365	DG(18)	NO ADVENSE FINDINGS EXCESS SALIVATION - SLIGHT	
0303	DL(14)	SOFT OR LIQUID FECES	
	DL(15- 17)	ABDOMINAL AREA: PURPLE	
8366	DL(13-17)	ABDOMINAL AREA: PURPLE	
8367	DG (8)	GASPING (IMMEDIATELY AFTER DOSAGE ADMINISTRATION)	
	DL(14-17)	ABDOMINAL AREA: PURPLE	
8368	DG (15)	EXCESS SALIVATION - SLIGHT	
	DL(16- 17)	ABDOMINAL AREA: PURPLE	
8369	DL(13- 16)	ABDOMINAL AREA: PURPLE	
8370	DL(12- 15)	ABDOMINAL AREA: PURPLE	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE

DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

a. Observation confirmed at necropsy.

TABLE 24 (PAGE 4): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GR	ROUP IV	HIGH DOSAGE	500 MG/KG/DAY
MOUSE #		DESCRIPTION	
8371	DL(16- 19)	ABDOMINAL AREA: PURPLE	
8372		NO ADVERSE FINDINGS	
8373	DL(17- 19)	ABDOMINAL AREA: PURPLE	
8374	DL(16- 19)	ABDOMINAL AREA: PURPLE	
8375	DG (14)	DEHYDRATION - MILD	
	DG (14)	RED PERIVAGINAL SUBSTANCE	
	DG(14- 15)	DECREASED MOTOR ACTIVITY	
	DG(14- 15)	PTOSIS	
	DG(14- 16)	DYSPNEA	
	DG(15)	DRIED RED PERIVAGINAL SUBSTANCE	
	DG(15)	SCANT FECES	
	DG(15- 17)	DEHYDRATION - SLIGHT	
	DG(17)	EXCESS SALIVATION - MODERATE	
	DG(17)	TACHYPNEA	
	DG (20- 21)	HYPERPNEA	
	DL(0)	SACRIFICED DUE TO NO SURVIVING	PUPS
8376	DL(18- 19)	ABDOMINAL AREA: PURPLE	
8377	DG (12)	EXCESS SALIVATION - SLIGHT	
	DL(18- 19)	ABDOMINAL AREA: PURPLE	
8378	DL(0)	SACRIFICED DUE TO NO SURVIVING	PUPS
8379	DG(16)	EXCESS SALIVATION - SLIGHT	
	DG(18)	EXCESS SALIVATION - SLIGHT	
	DL(15- 18)	ABDOMINAL AREA: PURPLE	
8380	DL(12- 15)	ABDOMINAL AREA: PURPLE	
8381	DL(1)	SACRIFICED DUE TO NO SURVIVING	PUPS
8382	DL(13- 17)	ABDOMINAL AREA: PURPLE	
8383	DG(15)	EXCESS SALIVATION - SLIGHT	
	DL(0)	SACRIFICED DUE TO NO SURVIVING	PUPS
8384		NO ADVERSE FINDINGS	
8385	DL(0)	SACRIFICED DUE TO NO SURVIVING	PUPS
8386	DG (8)	FOUND DEAD	
8387	DG(15)	TACHYPNEA	
	DL(13)	FOUND DEAD	
8388	DL(13)	FOUND DEAD	
8389	DG(15)	EXCESS SALIVATION - SLIGHT	
	DL(1)	SACRIFICED DUE TO NO SURVIVING	PUPS
8390	DG(10- 13)	DEHYDRATION - MILD	
	DG(12)	DYSPNEA	
	DG(15)	EXCESS SALIVATION - SLIGHT	
	DL(12- 15)	ABDOMINAL AREA: PURPLE	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

TABLE 25 (PAGE 1): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE # DOSAGE GROUP I					CONTROL				0 MG/KG/DAY					
PREGNANCY STATUS	Y DAY 0	6	7	8	9	10	11	12	13	14	15	16	17	
8311 P	28.4	30.7	31.4	32.2	33.4	35.1	37.8	39.6	42.7	44.7	50.3	55.3	59.7	
8312 P	28.0	29.0	29.8	31.6	32.0	33.2	35.7	38.0	39.8	42.5	46.2	50.2	54.5	
8313 NP	27.4	29.0	28.8	28.9	28.9	28.2	27.4	27.2	27.4	27.9	28.3	27.9	27.3	
8314 P	29.7	32.0	33.5	34.2	35.2	36.4	37.6	39.7	40.7	42.3	45.6	48.3	51.3	
8315 P	28.7	30.9	31.9	32.8	33.2	34.7	37.1	38.9	40.4	43.5	47.1	51.5	55.5	
8316 P	27.3	30.0	31.0	31.9	32.2	34.2	35.7	38.3	40.6	43.3	46.5	51.3	55.2	
8317 P	28.9	31.6	32.5	33.5	35.0	36.1	38.5	39.7	42.0	44.5	47.5	51.7	55.7	
8318 P	26.8	29.5	29.7	30.0	31.0	31.5	32.6	34.5	35.3	35.6	36.6	38.0	39.6	
8319 P	26.8	29.1	30.2	31.2	32.6	34.1	36.9	39.8	41.5	44.0	47.0	50.3	54.0	
8320 P	27.7	30.0	30.2	30.6	31.5	32.0	32.8	34.3	34.4	36.5	37.8	39.7	40.7	
8321 P	29.3	31.3	32.9	33.5	34.3	35.8	38.2	39.7	42.3	45.0	48.6	52.7	57.5	
8322 P	26.1	30.1	30.7	32.1	33.2	35.0	37.4	40.6	42.7	45.9	50.0	54.0	56.6	
8323 P	27.5	29.4	29.4	29.7	30.4	32.2	34.8	36.2	38.1	40.7	44.3	48.5	51.7	
8324 P	27.9	30.6	31.6	33.0	34.3	35.2	37.7	39.4	42.4	45.6	49.0	52.1	55.4	
8325 P	28.2	30.2	31.2	32.0	33.2	34.2	36.2	38.5	40.9	43.9	47.6	51.8	55.0	
8326 P	27.0	30.4	31.2	31.8	33.1	35.4	37.1	39.6	42.2	45.2	49.8	53.6	57.2	
8327 P	28.2	30.4	31.4	31.9	32.0	33.2	34.8	36.2	37.9	39.9	43.9	46.5	49.3	
8328 P	28.1	29.4	29.8	31.0	31.5	32.5	34.3	37.8	40.3	43.3	46.1	50.3	53.2	
8329 P	28.5	30.6	30.7	31.0	30.7	30.6	31.5	31.6	31.5	31.9	32.2	32.4	33.2	
8330 P	28.8	32.7	34.1	34.9	36.1	37.4	39.5	41.3	43.4	45.3	48.7	52.5	55.4	

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 2): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGE	GROUP I			CONTRO	L	0 MG/KG/DAY
PREGNANC' STATUS	DAY 18				22		
	63.1						
8312 P	58.4						
8313 NP	27.3	27.1	27.6	26.7	27.4	29.0	
8314 P	54.5						
8315 P	58.8						
8316 P	58.8						
8317 P	58.1						
8318 P	40.7						
8319 P	56.6						
8320 P	42.4						
8321 P	61.7	65.2	63.6				
8322 P							
8323 P	55.0						
8324 P	59.5						
8325 P	58.6						
8326 P	60.6						
8327 P	52.8						
8328 P	55.6						
8329 P	33.5						
8330 P	58.5						

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 3): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGE	GROUP II			LOW DO:	SAGE			100 MG	/KG/DAY			
PREGNANC' STATUS	Y DAY 0	6	7	8	9	10	11	12	13	14	15	16	17
8331 P	26.6	30.5	31.3	32.6	33.7	35.6	37.8	39.1	41.5	45.1	49.0	51.9	56.4
8332 P	27.2	29.5	30.4	30.7	31.3	32.3	34.5	36.5	38.7	41.1	44.0	47.4	51.0
8333 P	26.9	28.8	29.6	30.5	31.4	32.8	34.8	36.8	38.0	40.7	44.4	48.4	52.3
8334 P	28.6	31.1	32.5	34.6	35.2	36.8	38.1	40.5	41.4	44.5	47.9	50.8	54.2
8335 P	27.5	30.1	31.5	32.7	32.5	34.4	35.7	38.4	40.0	43.1	47.1	50.8	55.3
8336 P	28.8	31.1	31.8	33.2	33.8	35.2	37.1	39.1	41.9	44.2	48.0	52.4	56.9
8337 P	27.4	30.3	30.6	31.7	33.2	34.6	36.3	38.6	39.3	42.0	44.6	47.8	50.7
8338 P	28.4	30.2	31.0	31.2	31.5	32.7	35.4	36.7	39.3	41.8	45.6	49.7	51.9
8339 P	27.8	30.0	30.3	30.9	31.4	33.2	35.5	37.5	38.9	42.0	45.3	49.1	52.1
8340 P	29.0	32.0	33.1	33.7	34.8	36.1	37.7	39.5	40.5	43.8	46.7	50.3	54.5
8341 P	26.5	28.6	29.2	29.3	29.7	30.6	32.8	34.7	36.9	39.1	42.5	46.2	49.1
8342 P	28.2	30.7	31.2	32.5	33.4	34.2	37.4	39.2	41.0	43.5	47.2	51.5	55.3
8343 P	28.3	29.6	29.8	29.9	30.7	31.5	33.5	35.6	37.7	40.1	43.2	45.9	48.8
8344 P	28.0	30.7	31.4	32.4	32.8	34.8	36.8	39.5	41.9	44.1	48.4	52.2	54.8
8345 NP	27.7	29.2	29.5	29.3	29.0	28.6	28.1	28.8	29.9	30.1	30.2	29.7	29.4
8346 P	28.8	31.9	32.6	32.8	33.2	35.4	37.3	40.2	42.2	45.0	49.9	53.7	57.3
8347 P	28.1	32.3	33.3	34.6	36.1	37.9	40.3	43.7	46.7	50.0	53.5	59.0	63.6
8348 P	30.0	32.3	32.7	33.0	34.0	35.8	37.9	39.9	42.6	45.9	49.9	53.6	57.8
8349 P	29.6	32.7	33.2	34.9	35.7	36.8	38.8	41.4	44.4	46.2	50.0	53.1	57.8
8350 P	26.8	30.3	30.5	31.4	31.8	32.9	35.4	37.1	39.6	42.2	44.8	49.1	51.9

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 4): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGE	GROUP II			LOW DO	SAGE	100 MG/KG/DAY
PREGNANCY STATUS	DAY 18						
	59.0						
8332 P	54.6						
8333 P	55.6						
8334 P	57.7						
8335 P	59.0						
8336 P	60.3						
8337 P							
8338 P	54.5						
8339 P	54.7						
8340 P	56.7						
8341 P	51.4						
8342 P	59.7						
8343 P	51.0						
8344 P	58.7						
8345 NP	30.4	29.5	30.5	30.4	29.9	31.2	
8346 P	60.3						
8347 P	67.5						
8348 P	61.0						
	60.3						
	55.5						

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 5): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGE	GROUP II	I		MIDDLE	DOSAGE		350 MG/KG/DAY					
PREGNANCY STATUS	Y DAY 0	6	7	8	9	10	11	12	13	14	15	16	17
8351 P	27.9	31.4	32.2	33.3	34.6	36.7	39.8	42.6	44.9	49.0	53.9	58.9	63.5
8352 P	26.9	30.8	31.6	32.7	33.4	35.1	36.2	37.6	39.2	41.8	45.7	48.6	51.8
8353 P	26.7	29.1	30.0	30.8	32.6	34.0	36.5	39.1	41.4	45.0	49.4	53.8	57.8
8354 P	29.5	32.4	32.9	33.7	35.5	37.6	41.0	44.2	46.8	50.4	56.1	60.5	62.8
8355 P	27.0	29.3	30.0	30.8	32.1	33.0	35.4	38.2	39.8	42.2	45.8	48.9	52.9
8356 P	28.2	30.3	31.6	33.1	33.9	32.6	35.3	37.7	38.6	42.4	45.0	47.5	51.3
8357 P	27.5	30.0	30.8	31.9	32.7	33.5	35.3	37.5	37.0	39.2	41.8	44.9	46.9
8358 P	28.6	29.7	30.6	31.0	32.8	33.7	35.8	38.1	39.5	42.3	44.9	48.1	51.0
8359 P	28.6	31.3	31.8	32.2	33.5	35.3	37.9	39.8	42.6	45.4	48.0	51.3	54.8
8360 P	27.6	29.7	30.6	31.2	32.3	34.1	37.1	37.9	39.6	43.5	47.9	50.8	53.5
8361 P	28.5	33.7	34.2	35.7	37.8	39.1	36.5	34.7	FOUND !	DEAD ON D.	AY 13 OF (GESTATION	
8362 P	28.1	30.1	30.9	31.0	32.0	33.4	36.0	37.4	40.0	42.6	47.2	49.6	51.1
8363 P	26.3	27.1	27.2	27.7	27.6	27.6	28.1	28.6	30.7	29.7	30.6	32.1	33.9
8364 P	27.5	30.1	30.8	27.9	29.8	31.1	33.6	36.1	38.5	41.8	45.7	49.5	52.9
8365 P	27.8	31.2	32.0	30.4	31.4	33.4	35.2	37.9	40.3	43.2	46.0	49.3	52.4
8366 P	28.2	31.3	32.1	32.9	32.9	34.7	37.0	39.2	41.3	43.8	46.2	49.5	53.2
8367 P	29.7	31.1	32.1	33.1	31.2	31.9	33.0	34.5	36.3	39.3	40.9	44.7	47.6
8368 P	27.2	29.7	30.7	31.4	32.8	34.8	36.2	38.8	41.6	44.4	47.2	51.3	54.0
8369 P	28.8	30.9	31.5	31.4	33.1	34.8	36.3	39.1	42.5	45.1	49.1	53.4	56.7
8370 P	29.3	31.3	32.1	32.7	33.3	34.6	37.0	39.8	42.3	45.3	49.6	53.2	57.6

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 6): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGI						350 MG/KG/DAY
PREGNANCY STATUS	DAY 18	19	20	21	22	23	
8351 P							
8352 P	53.3						
8353 P							
8354 P	64.6						
8355 P	55.0						
8356 P	53.3						
8357 P	48.8						
8358 P							
8359 P	56.4						
8360 P	56.1						
8361 P	FOUND	DEAD ON DA	Y 13 OF	GESTATION			
8362 P							
8363 P	34.9	35.3	36.2				
8364 P	56.5						
8365 P	54.8						
8366 P	56.2						
8367 P	46.0						
8368 P	57.3						
8369 P	59.6						
8370 P	60.7						

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 7): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGE	GROUP IV			HIGH DO	DSAGE			500 MG	/KG/DAY			
PREGNANCY STATUS	Y DAY 0	6	7	8	9	10	11	12	13	14	15	16	17
8371 P	26.7	29.6	31.0	31.4	32.8	34.2	36.0	39.6	41.8	43.9	47.5	50.6	55.1
8372 NP	27.4	29.5	29.8	30.2	29.5	29.5	29.7	29.5	29.1	29.3	28.7	29.7	30.4
8373 P	26.2	29.9	30.8	31.3	33.4	35.9	38.3	41.6	44.8	47.8	51.4	55.8	54.4
8374 P	27.1	29.6	29.8	30.3	31.3	34.1	36.0	37.8	39.5	41.6	44.7	48.7	51.3
8375 P	27.8	29.7	30.6	31.2	32.3	34.2	35.8	37.3	35.8	31.7	29.1	32.0	35.9
8376 P	27.0	28.3	29.4	30.5	28.9	31.0	33.3	35.8	37.7	40.8	44.3	47.5	50.7
8377 P	27.9	30.9	30.7	31.8	33.0	34.8	36.3	38.0	38.7	41.3	44.5	45.8	49.4
8378 P	28.3	31.1	31.7	32.5	33.6	34.1	35.8	37.8	40.4	43.0	46.6	50.7	48.4
8379 P	28.2	30.8	31.4	32.4	34.7	35.5	39.1	43.0	46.4	50.1	54.6	58.3	62.2
8380 P	27.9	30.6	30.8	31.9	31.1	32.1	33.1	35.1	36.6	38.5	40.3	42.1	44.4
8381 P	28.2	31.3	31.3	31.9	32.8	33.7	35.7	37.9	40.3	43.5	46.9	50.4	55.0
8382 P	29.6	31.3	32.4	32.9	33.4	35.6	37.2	40.5	42.3	46.5	50.4	54.2	56.2
8383 P	28.8	32.0	32.9	33.7	34.6	36.6	38.7	41.9	44.8	48.2	52.5	51.5	53.8
8384 NP	27.6	27.7	28.2	28.4	28.4	29.0	29.1	29.7	29.5	30.4	29.3	29.5	29.5
8385 P	28.5	29.8	30.7	31.4	32.2	34.6	35.6	39.0	40.7	44.1	48.2	52.7	56.1
8386 P	28.9	33.0	31.4	FOUND I	DEAD ON DA	AY 8 OF G	ESTATION						
8387 P	28.7	32.2	31.1	32.0	35.0	35.9	39.5	42.6	45.3	47.2	48.0	54.6	57.0
8388 P	26.8	29.2	30.1	30.7	31.4	33.5	35.0	37.3	39.4	42.5	46.2	49.6	52.8
8389 P	30.0	34.0	34.8	36.0	36.3	39.4	42.0	45.2	46.6	49.8	54.1	54.5	53.5
8390 P	28.0	29.8	31.0	32.4	33.1	27.9	33.2	36.9	39.0	43.3	46.4	50.8	54.5

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 25 (PAGE 8): MATERNAL BODY WEIGHTS - PRESUMED GESTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MOUSE #	DOSAGE	GROUP IV			HIGH D		500 MG/KG/DAY
PREGNANC STATUS	DAY 18	19				23	
8371 P	58.5						
8372 NP	30.7	29.5	29.5	28.3	29.1	29.0	
8373 P	58.2						
8374 P	52.5						
8375 P	35.4	32.9	36.1	33.3			
8376 P							
8377 P							
8378 P	42.6						
8379 P	65.9						
8380 P	47.0	48.8	50.4				
8381 P	52.8						
8382 P	58.3						
8383 P	58.6	58.7	58.3				
8384 NP	29.4	28.9	29.5	29.3	29.1	31.2	
8385 P	59.4						
8386 P	FOUND	DEAD ON DA	AY 8 OF G	ESTATION			
8387 P	58.8						
8388 P	54.6						
8389 P	59.6						
8390 P	57.3	61.7					

P = PREGNANT NP = NOT PREGNANT (VALUES EXCLUDED FROM AVERAGES)

DAY = DAY OF PRESUMED GESTATION

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

TABLE 26 (PAGE 1): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 0	1	2	3	4	5	6	7	8	9	10	11	12
MOUSE #	DOSAGE	GROUP I			CONTRO				0 MG/K	G/DAY			
8311	35.8	37.4	38.8	42.2	41.8	42.7	40.8	44.7	48.9	45.7	45.6	44.6	49.6
8312	33.1	33.8	37.0	38.3	39.8	39.3	39.1	42.4	46.8	46.6	45.4	45.2	47.1
8313	NOT PRI	EGNANT											
8314	34.4	37.0	38.2	40.9	40.6	42.4	43.1	43.0	49.2	47.8	48.6	45.7	49.5
8315	34.2	34.9	34.8	37.5	38.2	40.6	39.4	42.8	43.1	43.9	45.2	41.3	47.2
8316	33.8	35.2	36.3	37.4	40.7	39.8	41.0	41.1	44.8	43.4	46.1	44.6	48.1
8317	35.4	37.9	38.7	41.3	42.3	42.3	41.8	44.8	49.4	47.9	48.2	47.8	51.7
8318	31.6	30.8	30.5	33.0	34.1	34.8	33.8	34.7	37.6	36.1	36.1	37.0	39.1
8319	35.3	35.3	37.5	39.5	42.0	42.8	45.8	46.0	48.8	48.9	48.5	48.0	51.8
8320	30.4	31.9	32.5	32.6	33.7	34.0	34.3	34.9	38.5	38.0	37.3	36.3	38.9
8321	36.5	35.6	36.9	36.8	37.0	38.1	40.8	41.8	41.4	41.7	44.4	46.7	43.3
8322	34.4	35.6	37.3	37.7	40.3	42.4	42.5	43.3	43.8	49.4	48.4	49.2	48.6
8323	32.5	33.8	36.1	37.3	38.9	41.1	41.8	45.0	43.3	45.1	41.7	47.4	47.4
8324	36.0	37.6	39.7	42.4	44.7	43.5	46.7	49.4	49.1	47.8	47.8	50.7	52.4
8325	34.6	36.6	39.5	40.0	40.2	41.7	42.0	46.6	45.8	45.0	45.0	48.8	49.0
8326	35.5	39.7	42.4	41.6	42.5	44.2	47.6	46.7	48.1	44.5	50.0	52.0	46.9
8327	31.4	34.8	35.8	37.5	36.5	39.9	43.3	41.8	41.9	41.3	44.9	44.9	45.2
8328	32.9	35.6	37.8	38.1	37.3	39.7	43.7	42.0	42.5	42.1	45.3	47.0	42.8
8329	31.4	30.0	29.3	29.3		CED ON DA			DUE TO NO				
8330	35.9	36.7	37.2	39.7	45.0	42.9	42.4	43.4	45.4	47.9	43.8	47.1	47.7

DAY = DAY OF LACTATION

TABLE 26 (PAGE 2): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 14	15	16	17	18	19	20	21	
MOUSE #	DOSAGE	GROUP I			CONTROI				0 MG/KG/DAY
8311	51.8	48.7	49.2	50.3	50.5	48.7	48.8	47.7	
8312	50.2	45.8	49.2	46.1	46.8	44.9	44.3	43.5	
8313	NOT PRI	EGNANT							
8314	50.9	48.9	51.4	FOUND	DEAD ON DA	Y 16 OF	LACTATION		
8315	45.9	41.3	47.1	45.2	43.1	44.9	42.7	44.0	
8316	48.7	47.0	49.5	FOUND	DEAD ON DA	Y 16 OF	LACTATION		
8317	52.0	46.9	50.4	48.9	48.1	48.7	43.5	44.0	
8318	39.3	38.4	38.2	38.4	37.8	39.1	37.2	39.9	
8319	52.9	50.4	51.5	49.4	49.3	48.8	45.0	47.1	
8320	39.9	39.2	37.9	38.1	38.3	38.2	34.0	34.8	
8321	46.0	44.6	43.0	44.5	40.6	41.1	43.3	44.1	
8322	50.1	51.7	48.3	48.6	48.6	47.5	47.6	42.6	
8323	43.3	47.0	44.2	47.2	48.6	42.2	40.9	40.2	
8324	47.2	51.4	45.1	51.4	50.0	43.0	40.3	37.9	
8325	44.3	46.6	46.1	43.6	45.5	42.6	42.9	42.3	
8326	48.5	51.4	50.9	53.6	50.3	52.3	51.3	46.4	
8327	43.7	35.4	45.4	44.4	44.7	42.6	42.7	40.9	
8328	46.8				LACTATION				
8329					DUE TO NO	SURVIVIN	G PUPS		
8330	45.7	47.4	45.3	48.9	50.2	47.2	49.6	47.3	

DAY = DAY OF LACTATION

TABLE 26 (PAGE 3): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 0	1	2	3	4	5	6	7	8	9	10	11	12
MOUSE #	DOSAGE	GROUP II			LOW DOS	SAGE			100 MG	/KG/DAY			
8331	34.7	37.7	38.4	41.7	42.3	42.5	42.7	44.4	47.0	49.1	49.1	47.9	51.6
8332	31.4	32.9	33.6	36.0	36.6	36.3	37.6	38.1	41.7	40.3	40.3	37.8	42.6
8333	33.8	35.4	36.4	38.6	40.5	39.5	41.5	41.1	43.5	43.2	42.9	43.5	45.4
8334	33.7	35.5	37.2	38.3	38.6	40.1	41.2	41.9	46.6	45.2	44.8	44.1	49.7
8335	35.1	36.5	36.5	41.1	41.6	42.7	40.8	42.8	46.1	46.3	45.4	44.5	48.2
8336	37.5	37.4	37.3	40.4	41.2	43.9	43.6	46.3	49.7	47.9	46.5	44.2	51.2
8337	35.1	34.4	35.5	35.2	36.6	38.6	38.5	39.7	40.8	43.2	42.6	43.6	42.3
8338	34.7	36.9	37.3	41.3	41.4	42.0	43.0	45.6	50.2	47.5	48.0	44.8	51.5
8339	33.9	34.2	37.5	38.1	38.8	38.1	41.5	44.9	43.7	44.0	44.1	49.4	49.7
8340	36.1	36.1	40.5	41.2	40.6	43.0	45.4	46.6	47.6	47.7	47.3	49.4	52.7
8341	31.5	32.1	35.1	36.2	36.3	36.8	39.6	42.1	42.0	43.2	41.8	44.7	41.2
8342	35.4	36.6	39.5	41.8	42.7	44.7	46.2	49.7	48.6	48.5	46.3	50.4	53.2
8343	32.1	34.5	37.3	35.3	35.1	38.3	40.9	38.0	41.0	39.0	40.7	43.2	39.8
8344	33.5	36.4	38.1	39.7	40.4	40.7	46.7	45.0	45.6	44.3	47.0	49.9	45.9
8345	NOT PRI	EGNANT											
8346	38.0	39.1	39.9	43.2	40.6	43.8	47.7	45.5	46.2	47.7	49.0	51.4	44.3
8347	37.8	39.4	42.1	43.1	45.3	45.9	51.5	49.4	50.1	49.5	53.6	54.9	51.0
8348	36.2	38.1	39.8	39.9	41.4	41.5	45.7	44.8	44.7	44.4	50.0	50.4	41.7
8349	38.6	40.8	41.4	42.2	45.7	49.9	48.9	50.0	47.7	53.9	55.0	51.6	54.5
8350	34.8	34.8	34.8	37.1	40.2	39.8	41.8	42.0	43.0	45.9	44.0	45.5	45.2

DAY = DAY OF LACTATION

TABLE 26 (PAGE 4): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 14	15	16	17	18	19	20	21	
MOUSE #	DOSAGE	GROUP II			LOW DOS	AGE			100 MG/KG/DAY
8331	49.0	46.4	50.4	46.0	47.4	47.5	44.4	45.9	
8332	42.7	39.1	43.3	40.5	40.4	40.8	38.0	37.8	
8333	46.7	43.9	43.3	FOUND I	EAD ON DA	Y 16 OF 1	LACTATION		
8334	49.8	47.5	49.7	48.7	48.9	46.7	43.9	44.7	
8335	48.8	46.0	47.4	45.6	47.0	46.5	41.3	43.2	
8336	51.0	48.2	50.5	45.9	45.1	46.6	44.9	43.7	
8337	44.4	45.1	43.7	46.6	46.2	46.0	44.5	41.3	
8338	53.0	47.6	50.6	48.2	48.7	48.6	43.2	42.5	
8339	48.8	48.3	46.8	47.3	47.4	43.8	40.7	40.7	
8340	47.0	49.7	49.0	49.0	51.8	47.1	45.8	44.7	
8341	43.2	44.5	45.1	44.1	43.9	41.6	41.6	39.4	
8342	52.1	53.6	49.7	53.7	52.2	49.6	48.0	45.8	
8343	FOUND I	DEAD ON DA	AY 13 OF I	LACTATION					
8344	40.5	FOUND I	DEAD ON DA	AY 14 OF I	LACTATION				
8345	NOT PRE	EGNANT							
8346	FOUND I	DEAD ON DA	AY 13 OF I	LACTATION					
8347	FOUND I	DEAD ON DA	AY 13 OF I	LACTATION					
8348	FOUND I	DEAD ON DA	AY 13 OF I	LACTATION					
8349	52.2	53.0	54.9	51.3	51.0	53.0	49.3	47.7	
8350	47.7	48.7	45.1	44.9	49.2	48.4	49.8	45.7	

DAY = DAY OF LACTATION

TABLE 26 (PAGE 5): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 0	1	2	3	4	5	6	7	8	9	10	11	12
MOUSE #	DOSAGE	GROUP III	[MIDDL	E DOSAGE			350 MG	/KG/DAY			
8351	36.3	37.5	39.4	41.0	44.8	43.6	43.7	43.2	47.1	51.0	50.7	51.3	50.4
8352	34.4	38.0	38.0	39.9	38.9	40.7	41.6	44.0	47.4	45.3	43.6	41.9	45.5
8353	39.2	33.5	34.0	36.7	37.4	37.4	37.0	38.8	40.3	44.3	42.7	42.6	41.0
8354	37.8	36.2	SACRIFI	CED ON DA	Y 1 OF 1	LACTATION	DUE TO NO	SURVIVIN	G PUPS				
8355	33.0	35.1	36.0	36.3	36.7	37.2	38.5	42.4	42.2	42.5	43.4	44.2	46.4
8356	32.4	36.2	36.6	39.1	37.3	39.4	40.0	44.1	44.3	45.5	44.5	49.8	50.2
8357	31.7	31.2	35.9	36.1	35.1	34.8	38.3	40.1	38.9	39.1	38.8	41.2	42.5
8358	36.3	34.3	SACRIFI	CED ON DA	Y 1 OF 1	LACTATION	DUE TO NO	SURVIVIN	G PUPS				
8359	32.6	35.0	36.9	38.3	39.2	39.3	41.4	45.0	42.6	44.2	42.9	46.0	47.1
8360	31.6	34.7	35.7	37.9	37.5	35.5	40.3	41.1	42.7	44.8	42.5	47.1	46.4
8361	FOUND I	DEAD ON DA	AY 13 OF 0	SESTATION									
8362	32.9	32.6	34.2	36.2	39.7	37.6	38.6	40.4	44.9	42.5	43.0	43.9	45.9
8363	31.1	29.3	28.5	28.3	29.9	32.9	32.2	32.1	32.5	33.9	33.9	33.1	33.7
8364	34.4	35.2	37.2	35.6	37.2	36.8	38.0	42.7	41.0	42.7	43.4	47.0	46.6
8365	36.4	37.1	37.4	38.6	38.7	38.7	43.2	43.0	42.4	42.0	46.6	47.2	45.6
8366	34.8	37.0	39.0	38.0	39.9	40.1	44.9	42.5	44.1	45.2	48.1	48.0	48.1
8367	27.9	31.9	35.2	34.3	32.4	36.6	39.5	40.0	41.7	38.5	43.6	46.1	43.5
8368	34.3	36.4	39.2	38.0	37.5	40.0	44.5	43.5	43.1	42.5	44.9	47.7	45.4
8369	39.4	38.0	38.4	38.6	41.0	42.3	44.3	45.5	43.8	48.6	48.0	46.6	42.6
8370	38.5	36.2	39.4	39.4	41.7	41.9	42.4	42.8	45.2	46.8	44.7	46.1	45.9

DAY = DAY OF LACTATION

TABLE 26 (PAGE 6): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 14	15	16	17	18	19	20	21	
10USE #	DOSAGE	GROUP III	I		MIDDLE				350 MG/KG/DAY
8351	55.1	52.2	50.6	52.3	52.0	51.1	53.3	52.6	
8352	49.4	44.6	45.5	45.2	47.2	45.8	46.1	44.4	
8353	45.5	46.7	45.7	47.3	45.1	47.1	45.7	44.2	
8354	SACRIF	ICED ON DA	AY 1 OF L	ACTATION	DUE TO NO	SURVIVIN	G PUPS		
8355	44.5	47.2	45.5	44.2	43.4	44.3	42.9	40.7	
8356	47.1	48.5	51.0	50.0	53.2	50.2	46.4	46.5	
8357	40.9	42.6	42.0	41.8	41.6	37.2	35.1	37.5	
8358	SACRIF	ICED ON DA	AY 1 OF L	ACTATION	DUE TO NO	SURVIVIN	G PUPS		
8359	43.8	44.8	44.0	44.7	47.0	44.8	44.3	44.1	
8360	44.4	47.2	45.1	46.1	46.8	44.0	44.3	42.7	
8361	FOUND	DEAD ON DA	AY 13 OF	GESTATION					
8362	46.6	44.0	47.5	45.0	44.7	48.2	43.3	44.0	
8363	33.5	33.7	33.7	32.5	33.9	35.0	35.7	36.3	
8364	42.3	45.7	46.4	47.2	49.3	49.8	47.6	51.9	
8365	48.1	42.6	46.3	48.1	46.8	42.9	39.9	39.5	
8366	45.4	47.6	48.8	50.6	47.6	43.5	40.7	38.9	
8367	43.1	45.5	45.5	48.2	47.0	46.2	47.4	47.1	
8368	44.6	43.6	45.4	46.1	42.9	42.0	43.5	41.4	
8369	46.3	46.9	50.1	49.1	49.5	49.5	47.9	46.2	
8370	44.1	51.1	49.7	51.2	50.5	54.4	49.9	46.3	

DAY = DAY OF LACTATION

TABLE 26 (PAGE 7): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 0	1	2	3	4	5	6	7	8	9	10	11	12
	DOSAGE					OOSAGE			500 MG				
	34.5						34.7		39.6				43.8
8372	NOT PRI	EGNANT											
8373	39.4	39.2	39.0	38.7	41.1	41.1	41.5	44.7	47.6	47.1	48.5	45.3	49.5
8374	33.2	34.7	36.1	37.0	38.2	37.6	38.2	38.9	42.4	42.1	44.4	42.6	47.1
8375	28.9	SACRIF	ICED ON DA	Y 0 OF	LACTATION	DUE TO NO	SURVIVING	PUPS					
8376	33.5	33.0	34.6	34.6	38.1	39.3	39.0	38.6	41.8	46.1	43.7	44.8	42.7
8377	32.5	33.4	36.5	35.5	37.3	37.0	38.1	37.7	42.6	40.7	40.4	41.1	44.3
8378	30.0	SACRIF	ICED ON DA	Y O OF	LACTATION	DUE TO NO	SURVIVING	PUPS					
8379	37.5	39.4	42.6	42.6	42.1	44.0	46.5	47.2	48.0	48.5	47.9	51.5	49.6
8380	35.6	34.6	36.0	37.1	40.0	39.1	40.1	41.5	42.9	44.5	42.5	44.7	43.7
8381	34.2	34.2	SACRIFI	CED ON	DAY 1 OF I	LACTATION I	DUE TO NO :	SURVIVIN	G PUPS				
8382	36.9	39.9	39.3	39.4	40.1	39.8	44.4	43.2	43.9	44.4	46.7	47.7	48.1
8383	38.9	SACRIF	ICED ON DA	Y O OF	LACTATION	DUE TO NO	SURVIVING	PUPS					
8384	NOT PRE	EGNANT											
8385	38.9	SACRIF	ICED ON DA	Y O OF	LACTATION	DUE TO NO	SURVIVING	PUPS					
8386	FOUND I	DEAD ON D	AY 8 OF GE	STATION	I								
8387	36.7	36.4	37.2	37.3	37.4	39.4	44.1	41.9	45.0	44.6	46.2	48.7	42.4
8388	35.1	35.4	35.8	35.4	34.2	36.7	39.4	39.7	39.6	39.4	43.2	45.5	40.1
8389	37.4	37.9	SACRIFI	CED ON	DAY 1 OF I	LACTATION I	DUE TO NO :	SURVIVIN	G PUPS				
8390	36.7		34.8	35.3	38.3	37.6	39.5	39.3	41.2	42.2	42.7	43.7	44.9

DAY = DAY OF LACTATION

TABLE 26 (PAGE 8): MATERNAL BODY WEIGHTS - LACTATION - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	DAY 14	15	16	17	18	19	20	21	
	DOSAGE				HIGH DO				500 MG/KG/DAY
	44.7				43.6				
8372	NOT PRE	EGNANT							
8373	47.7	48.7	47.6	47.2	47.9	46.3	41.4	38.7	
8374	45.4	44.7	46.8	44.8	43.5	46.2	43.0	43.9	
8375	SACRIF	CED ON DA	Y 0 OF	LACTATION	DUE TO NO	SURVIVING	PUPS		
8376	45.8	47.5	46.3	44.9	46.9	45.1	44.2	37.3	
8377	45.0	42.8	41.7	42.7	42.8	43.0	38.9	36.6	
8378	SACRIF	CED ON DA	Y 0 OF	LACTATION	DUE TO NO	SURVIVING	PUPS		
8379	48.1	50.0	52.1	53.0	52.1	48.2	44.5	42.3	
8380	45.3	45.8	44.7	43.0	42.9	37.7	38.6	40.7	
8381	SACRIF	CED ON DA	Y 1 OF	LACTATION	DUE TO NO	SURVIVING	PUPS		
8382	50.7	48.2	49.1	48.4	50.1	50.0	50.7	48.1	
8383	SACRIF	CED ON DA	Y 0 OF	LACTATION	DUE TO NO	SURVIVING	PUPS		
8384	NOT PRI	EGNANT							
8385	SACRIF	CED ON DA	Y 0 OF	LACTATION	DUE TO NO	SURVIVING	PUPS		
8386	FOUND I	DEAD ON DA	Y 8 OF	GESTATION					
8387	FOUND I	DEAD ON DA	Y 13 OF	F LACTATION	N				
8388	FOUND I	DEAD ON DA	Y 13 OF	F LACTATION	N				
8389	SACRIF	CED ON DA	Y 1 OF	LACTATION	DUE TO NO	SURVIVING	PUPS		
8390	44.7	45.9	44.3	46.0	46.6	45.5	41.5	38.1	

DAY = DAY OF LACTATION

TABLE 27 (PAGE 1): NATURAL DELIVERY, IMPLANTATION SITES, AND PUP VIABILITY AND SEX - INDIVIDUAL DATA - FO GENERATION FEMALE MICE/F1 GENERATION LITTERS

DOSAGE 0	GROUP I		CC	ONTROL					0	MG/I	KG/DAY				
MOUSE/ LITTER NUMBER	DURATION OF GESTATION (DAYS) N	LIVE BORN	ER DELIV STILL- BORN N	/ERED TOTAL BORN N		0	CO		'ION O					20 I F	TOTAL IMPLAN- TATIONS N
8311		 16				8	8	 8		 8	 8		 8	8	16
8312 8313	20 NOT PREGNANT	15	0	15	6	9	6	8	6	8	6	8	6	8	15
8314a	20	11	0	11	6	5	6	5	6	5	6	5	6	5	13
8315	20	13	0	13	12	1	12	1	12	1	12	1	12	1	14
8316a	20	14	0	14	6	8	6	8	6	8	6	8	6	8	15
8317	20	11	1	12	5	6	5	6	5	6	5	6	5	6	15
8318	20	4	0	4	1	3	1	3	1	3	1	3	1	3	5
8319	20	13	0	13	5	8	5	8	5	8	5	8	5	8	13
8320	20	5	0	5	2	3	2	3	2	3	2	3	2	3	5
8321	22	4	3	7	2	2	2	2	2	2	2	2	2	2	16
8322	19	14	0	14	5	9	5	9	5	9	5	9	5	9	14
8323	20	16	0	16	9	7	9	7	9	7	9	7	9	7	16
8324	19	12	0	12	7	5	7	5	7	5	7	5	7	5	15
8325	20	14	0	14	6	8	6	8	6	8	6	8	6	8	15
8326	19	15	0	15	10	5	10	5	10	5	10	5	10	5	15
8327	20	12	0	12	7	5	7	5	7	5	7	5	7	5	12
8328b	20	13	0	13	6	7	6	7	5	7	5	7	5	7	14
8329	20	1	0	1	-	1	-	-	-	-	-	-	-	-	1
8330	20	14	0	14	4	10	4	10	4	10	4	10	4	10	16

 $M = M\Delta T.F.$ F = FEMAT.F.

a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.

b. Mouse was found dead on day 14 of lactation, pups remained on study to day 20 postpartum.

TABLE 27 (PAGE 2): NATURAL DELIVERY, IMPLANTATION SITES, AND PUP VIABILITY AND SEX - INDIVIDUAL DATA - FO GENERATION FEMALE MICE/F1 GENERATION LITTERS

DOSAGE G	ROUP II		LC	OW DOSAGE					1(00 MG,	/KG/D	AY			
MOUSE/ LITTER		LIVE BORN	STILL- BORN	VERED TOTAL BORN N		0	CON	4 4	ION O	F DAY 7	POST	PARTUI 14		0	TOTAL IMPLAN- TATIONS N
8331	20	 15	0		 8	 7	 8	7	 8	 7	 8	 7	 8	 6	 17
8332	20	13	0	13	7	6	7	5	7		7	5	7	5	1.4
8333a	20	14	0	14	6	8	6	8	6	8	6	8	6	8	17
8334	20	12	0	12	8	4	8	4	8	4	8	3	8	3	14
8335	20	13	0	1.3	7	6	7	6	7	6	7	6	7	6	13
8336	20	12	0	12	7	5	7	4	7	4	7	4	7	4	12
8337	19	10	0	10	5	5	5	5	5	5	5	5	5	5	12
8338	20	13	0	13	6	7	6	7	6	7	6	7	6	7	14
8339	20	14	0	14	7	7	7	6	7	6	7	6	7	6	16
8340	20	12	0	12	5	7	5	7	5	7	5	7	5	7	14
8341	20	13	0	13	7	6	7	6	7	6	7	6	7	5	13
8342	20	12	0	12	4	8	4	8	4	8	4	8	4	8	14
8343b	20	11	0	11	5	6	5	6	5	6	5	6	5	6	14
8344c	20	15	0	15	3	12	3	12	2	12	2	12	2	9	16
8345	NOT PREGNANT														
8346b	20	13	0	13	5	8	5	8	5	8	4	8	3	3	14
8347b	20	17	0	17	9	8	9	8	9	8	8	8	2	2	17
8348b	20	15	0	15	9	6	9	6	9	6	9	6	6	2	18
8349	20	12	0	12	6	6	6	6	6	6	6	6	6	6	13
8350	20	14	0	14	8	6	8	6	8	6	8	6	8	6	14

M = MALE F = FEMALE

a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.

b. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

c. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 27 (PAGE 3): NATURAL DELIVERY, IMPLANTATION SITES, AND PUP VIABILITY AND SEX - INDIVIDUAL DATA - FO GENERATION FEMALE MICE/F1 GENERATION LITTERS

DOSAGE					.GE				3	50 MG	KG/D	AY			
MOUSE/ LITTER	DURATION OF GESTATION (DAYS)	LITTE LIVE BORN	R DELIV STILL- BORN	/ERED TOTAL BORN		0	COM	NUMB MPLET 4	ER OF	LIVE F DAY 7	PUPS	AT PARTU 14	М	20	TOTAL IMPLAN- TATIONS
NUMBER	N										M				N
8351	19	18				7	11	7	11	7	11	7	11	7	18
8352	20	11	0	11	7	4	7	4	7	4	7	4	7	4	13
8353	19	15	1	16	7	8	7	8	7	7	6	7	6	7	16
8354	20	13(2)	0	19[6]	7	4	-	-	-	_	-	-	-	-	19
8355	20	14	0	14	8	6 5	8	6	7 6	6	6	6		6	15
8356	20	11	0	12[1]	6	5	6	5	6	5	6	5	6	5	14
8357	20	9(1)	1	10	5	3	5	3	5	3	5	3	5	3	12
8358	19	10	1	11	5	5	-	-	_	_	-	-	-	-	12
8359	20	16	0	16	7	9	7	9	7	9	7	8	7	8	17
8360	20	13	1	14	5	8	5	8	5	7	5	7	5	7	15
8361	FOUND DEAD	ON DAY 13	OF GEST	TATION											
8362	19	14	0	15[1]	10	4	10	4	10	4	10	4	10	4	15
8363	22	2	0	2	2	-	2	-	2	-	2	-	2	-	2
8364	20	14	0		11	3	9	3	9	3	9	3	9	3	15
8365	20	8	0	8	4	4	4	4	4		4		4	4	10
8366	20	13	0	13	5	8	5	8	5	8	5	8	5	8	14
8367	20	12	0	12	7		7	4	7	4	7	4	7	4	13
8368	20	13	0	13	7	6	7	6	7	6	7	6	7	6	15
8369	20	12	0	12	5	7	5	6	5	6	5	6	5	6	14
8370	20	14	1	15	4	10	4	10	4	10	4	10	4	10	17

M = MALE F = FEMALE

^{() =} NUMBER OF PUPS DYING PRIOR TO WEIGHING ON DAY 0 POSTPARTUM.

^{[] =} NUMBER OF PUPS IN WHICH CANNIBALIZATION AND/OR AUTOLYSIS PRECLUDED THE DETERMINATION OF VIABILITY.

TABLE 27 (PAGE 4): NATURAL DELIVERY, IMPLANTATION SITES, AND PUP VIABILITY AND SEX - INDIVIDUAL DATA - FO GENERATION FEMALE MICE/F1 GENERATION LITTERS

OSAGE (GROUP IV		HI	GH DOSAGE					50	00 MG/	KG/DA	Υ			
OUSE/ LITTER	DURATION OF	LITTE LIVE BORN	CR DELIV STILL- BORN	ERED TOTAL BORN		0	COM	NUMBE IPLETI 4	R OF ON OF	LIVE DAY 7	PUPS POSTP	AT ARTUN		0	TOTAL IMPLAN- TATIONS N
8371	20			12		7		6		6		6			14
8372	NOT PREGNANT														
8373	20	11	0	11	7	-	6	4		4	6	4	6	4	15
8374	20	10	0	10	4	6	4	6	4	6	4	6	4	6	11
8375	23	0	3	3	-	-	-	-	-	-	-	-	-	_	15
8376	19	12	0	12	6	6	6	6	6	6	6	6	6	6	14
8377	19	11	0	11	5	6	5	6	5	6	5	6	5	6	12
8378	20	1(1)	9	10	-	-	-	-	_	-	-	-	-	_	16
8379	19	14(1)	0	14	6	7	6	7	6	7	6	7	6	7	17
8380	22	7	0	7	4	3	4	3	4	3	4	3	4	3	7
8381	20	11(2)	1	12	3	6	-	-	_	-	-	-	_	-	14
8382	20	12	0	12	3	9	3	9	3	9	3	9	3	9	14
8383	22	6(6)	2	8	-	-	-	-	_	-	-	-	_	-	15
8384	NOT PREGNANT														
8385	20	6(6)	1	14[7]	-	-	-	-	_	-	-	-	_	-	15
8386	FOUND DEAD ON	DAY 8 C	F GESTA	TION											
8387a	20	14(4)	0	14		6		4		4	4	4	4	4	18
8388a	20	10(1)	1	11	5	4	3	4	3	4	3	4	3	4	14
8389	19	2	0	6[4]	1	1	-	-	_	-	-	-	-	_	14
8390	20	11	2	13	7	4	6	3	6	3	6	3	6	3	14

M = MALE F = FEMALE

^{() =} NUMBER OF PUPS DYING PRIOR TO WEIGHING ON DAY 0 POSTPARTUM.

^{[] =} NUMBER OF PUPS IN WHICH CANNIBALIZATION AND/OR AUTOLYSIS PRECLUDED THE DETERMINATION OF VIABILITY.

a. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

TABLE 28 (PAGE 1): PUP BODY WEIGHT LITTER AVERAGES FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION LITTERS

DOSAGE GROUP) I			(CONTROL					0	MG/KG/	DAY				
MOUSE/ LITTER	D.	0 AY 0		D.F	AY 4		D.	AY 7		D.	AY 14		D	AY 20		
NUMBER		F	_		F			F	_		F			F	T	
8311		1.3			2.5	2.6			3.5			5.5		6.7		
8312	1.6	1.4	1.5	2.7	2.4	2.5	3.7	3.4	3.5	6.4	6.0	6.2	9.4	9.0	9.2	
8313	NOT I	PREGNAN	ΙT													
8314a	1.6	1.7	1.6	3.4	3.2	3.3	4.9	5.0	4.9	8.3	8.5	8.4	11.9	11.8	11.9	
8315	1.6	1.6	1.6	2.8	2.9	2.8	4.0	3.9	4.0	6.8	6.8	6.8	10.5	10.2	10.5	
8316a	1.5	1.5	1.5	2.9	2.7	2.8	4.1	3.8	3.9	6.9	6.4	6.6	9.8	9.1	9.4	
8317	1.6	1.7	1.6	3.2	3.0	3.1	4.7	4.6	4.6	7.7	7.8	7.7	11.6	11.6	11.6	
8318	1.9	2.0	2.0	3.8	3.7	3.7	5.6	5.8	5.8	11.1	11.1	11.1	16.8	16.8	16.8	
8319	1.6	1.6	1.6	2.9	2.9	2.9	4.2	4.3	4.3	7.1	7.0	7.0	10.2	10.5	10.4	
8320	1.8	1.8	1.8	4.0	3.9	4.0	6.4	6.3	6.3	11.8	11.7	11.7	17.8	16.8	17.2	
8321	1.6	1.8	1.7	3.6	3.8	3.7	5.4	5.7	5.6	10.6	11.2	10.9	16.5	16.6	16.5	
8322	1.5	1.5	1.5	2.5	2.5	2.5	4.0	3.9	3.9	6.6	6.4	6.5	10.0	9.7	9.8	
8323	1.4	1.3	1.4	2.5	2.6	2.6	3.9	3.7	3.8	6.2	5.8	6.0	8.8	8.7	8.8	
8324	1.6	1.6	1.6	3.3	3.4	3.3	5.2	5.2	5.2	8.1	8.1	8.1	12.7	12.5	12.6	
8325	1.5	1.4	1.5	2.8	2.7	2.7	4.0	3.9	4.0	6.5	6.2	6.3	8.8	8.6	8.7	
8326	1.6	1.5	1.6	2.9	2.9	2.9	4.4	4.1	4.3	6.7	6.5	6.6	9.8	9.8	9.8	
8327	1.6	1.6	1.6	2.6	2.5	2.6	3.9	3.8	3.8	5.9	5.9	5.9	8.6	8.7	8.6	
8328b	1.5	1.5	1.5	2.8	2.8	2.8	4.0	3.9	4.0	6.3	6.4	6.3	8.3	8.5	8.4	
8329		1.9	1.9	NO SU	JRVIVI	IG PUPS	ON DAY	3 PO	STPARTU	JM						
8330	1.6	1.5	1.5	2.8	2.5	2.6	4.0	3.7	3.8	6.6	6.2	6.3	10.5	9.7	9.9	

M = MALE F = FEMALE T = TOTAL (SUM OF PUP WEIGHTS/NUMBER OF LIVE PUPS) DAY = DAY POSTPARTUM

ALL WEIGHTS WERE RECORDED IN GRAMS (G). MEAN LITTER WEIGHTS INCLUDE ONLY WEIGHTS OF LIVE PUPS.

a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.

b. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 28 (PAGE 2): PUP BODY WEIGHT LITTER AVERAGES FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION LITTERS

DOSAGE GRO	UP II			:	LOW DO	SAGE				100	O MG/K	G/DAY				
MOUSE/ LITTER	D.	AY 0		Di	AY 4		D	AY 7		Di	AY 14			AY 20		
NUMBER	М	F	T	M	F	T	M	F	T	М	F	T	M	F	T	
8331	1.5	1.3	1.4	2.8	2.6	2.7	4.2	3.7	4.0	6.4	5.6	6.1	9.7	8.4	9.2	
8332	1.6	1.5	1.5	3.1	3.0	3.0	4.4	4.5	4.5	7.0	6.9	7.0	10.6	10.5	10.6	
8333a	1.4	1.3	1.3	2.8	2.8	2.8	3.9	4.0	4.0	6.2	6.4	6.3	8.0	8.4	8.2	
8334	1.4	1.5	1.4	2.8	2.8	2.8	4.1	4.1	4.1	7.4	7.3	7.4	10.5	10.6	10.5	
8335	1.5	1.3	1.4	3.1	2.9	3.0	4.6	4.2	4.4	7.6	7.1	7.3	11.8	10.5	11.2	
8336	1.7	1.5	1.6	3.3	3.2	3.3	4.8	4.6	4.7	7.6	7.4	7.6	11.7	11.4	11.6	
8337	1.5	1.5	1.5	2.9	3.0	2.9	4.6	4.6	4.6	7.5	7.5	7.5	10.7	11.2	11.0	
8338	1.4	1.4	1.4	3.1	2.9	3.0	4.5	4.3	4.4	8.4	7.9	8.2	12.4	11.8	12.1	
8339	1.4	1.3	1.3	2.7	2.4	2.6	3.9	3.6	3.7	6.8	6.4	6.6	9.8	9.4	9.6	
8340	1.6	1.5	1.6	3.0	2.9	2.9	4.5	4.3	4.4	6.7	7.0	6.9	9.7	10.3	10.1	
8341	1.4	1.3	1.4	2.5	2.4	2.5	3.6	3.4	3.5	6.0	5.7	5.9	8.7	7.9	8.4	
8342	1.6	1.6	1.6	2.9	2.8	2.9	4.0	3.7	3.8	6.8	6.8	6.8	9.8	9.9	9.8	
8343b	1.5	1.6	1.5	2.5	2.6	2.5	4.0	3.9	4.0	5.3	5.1	5.2	7.7	7.1	7.4	
8344c	1.4	1.4	1.4	2.3	2.7	2.6	3.6	3.8	3.8	4.8	4.9	4.9	7.4	6.8	6.9	
8345	NOT	PREGNAI	NT													
8346b	1.7	1.6	1.6	2.8	2.8	2.8	4.1	4.1	4.1	4.8	4.8	4.8	5.3	6.0	5.6	
8347b	1.5	1.5	1.5	2.4	2.3	2.4	3.3	3.2	3.2	4.3	4.2	4.2	6.4	5.4	5.9	
8348b	1.5	1.4	1.5	2.7	2.6	2.7	4.0	3.8	4.0	4.6	4.5	4.6	7.0	7.4	7.1	
8349	1.6	1.6	1.6	3.1	2.9	3.0	4.8	4.4	4.6	7.4	7.2	7.2	10.6	10.4	10.4	
8350	1.4	1.3	1.4	2.4	2.4	2.4	3.8	3.6	3.7	6.1	5.7	6.0	7.6	7.2	7.4	

M = MALE F = FEMALE T = TOTAL (SUM OF PUP WEIGHTS/NUMBER OF LIVE PUPS) DAY = DAY POSTPARTUM

ALL WEIGHTS WERE RECORDED IN GRAMS (G). MEAN LITTER WEIGHTS INCLUDE ONLY WEIGHTS OF LIVE PUPS.

a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.

b. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

c. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 28 (PAGE 3): PUP BODY WEIGHT LITTER AVERAGES FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION LITTERS

DOSAGE GROUP	P III			1	MIDDLE	DOSAGE				350) MG/K	G/DAY				
MOUSE/ LITTER	D <i>l</i>	AY 0		D <i>i</i>	AY 4		Di	AY 7		Dž	AY 14		D	AY 20		
NUMBER	M	_	_		F		M		T		F			F	T	
8351		1.3				2.2			3.3		5.0			6.3		
8352	1.5	1.4	1.5	1.9	1.9	1.9	3.0	3.0	3.0	6.8	6.4	6.6	9.0	9.6	9.3	
8353	1.1	1.1	1.1	1.7	1.7	1.7	2.3	2.5	2.4	5.1	5.0	5.0	6.4	6.2	6.3	
8354	1.2	1.2	1.2	NO SI	JRVIVII	NG PUPS	ON DA	Y 1 PO	STPART	UM						
8355	1.3	1.2	1.2	1.7	1.9	1.8	2.8	3.1	3.0	6.1	6.6	6.3	7.4	8.0	7.7	
8356	1.5	1.4	1.4	2.4	2.4	2.4	4.0	3.9	4.0	7.1	7.0	7.0	10.4	10.3	10.4	
8357	1.4	1.3	1.4	2.5	2.4	2.4	4.3	4.0	4.2	8.4	8.1	8.3	7.0	8.9	7.7	
8358	1.3	1.3	1.3	NO ST	JRVIVII	NG PUPS	ON DA	Y 1 PO	STPART	UM						
8359	1.2	1.2	1.2	2.0	2.0	2.0	3.0	2.9	3.0	5.2	5.6	5.4	5.8	6.6	6.2	
8360	1.4	1.4	1.4	1.6	1.7	1.6	2.7	2.6	2.6	5.9	5.8	5.8	7.9	7.9	7.9	
8361	FOUNI	DEAD	ON DAY	13 OF	GESTA:	TION										
8362	1.0	1.0	1.0	1.9	1.7	1.8	3.0	2.7	2.9	5.7	5.6	5.7	7.8	7.4	7.6	
8363	2.2		2.2	4.0		4.0	5.8		5.8	10.0		10.0	16.4		16.4	
8364	1.4	1.3	1.4	1.3	1.3	1.3	2.0	2.3	2.1	5.4	5.9	5.6	7.2	8.1	7.4	
8365	1.6	1.5	1.5	3.4	3.3	3.3	5.2	5.2	5.2	8.8	8.6	8.7	14.6	13.6	14.1	
8366	1.5	1.4		2.9	2.6	2.7	4.2	4.0	4.1	6.2	5.9	6.0	9.2	8.7	8.9	
8367	1.2	1.1		2.0	2.0	2.0	3.2	3.4	3.3	5.6	5.4	5.5	7.3	6.7	7.1	
8368	1.5	1.5	1.5	2.3	2.3	2.3	3.6	3.7	3.7	6.2	6.4		8.4	8.8	8.6	
8369	1.5	1.4	1.4	2.4	2.6	2.5	4.2	4.1	4.2	6.2	6.0			9.4	9.5	
8370	1.4	1.4	1.4	2.4	2.2	2.2	3.8	3.6	3.6	6.1	5.7	5.8	8.0	7.9	7.9	

TABLE 28 (PAGE 4): PUP BODY WEIGHT LITTER AVERAGES FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION LITTERS

DOSAGE GROU	JP IV			HIGH D	DSAGE				50	0 MG/K	G/DAY				
MOUSE/ LITTER	DAY	0	Dž	AY 4		D	AY 7		D.	AY 14			AY 20		
NUMBER	M F	T	M	F	T	M	F	T	M	F	T	М	F	T	
8371 8372	1.4 1 NOT PRE	.4 1.4 GNANT	1.6	1.5	1.6	2.3	2.4	2.3	5.6	6.2	6.0	7.7	8.6	8.3	
8373	1.4 1	.4 1.4	2.3	2.1	2.2	3.8	3.6	3.7	7.8	7.6	7.7	11.1	10.7	10.9	
8374	1.4 1	.4 1.4	2.8	2.8	2.8	4.3	4.3	4.3	7.8	8.0	7.9	11.2	11.3	11.3	
8375	NO SURV	IVING PUR	S ON DAY	0 PO	STPARTU	М									
8376	1.3 1	.3 1.3	2.3	2.2	2.2	3.8	3.8	3.8	7.0	6.8	6.9	10.0	10.0	10.0	
8377	1.1 1	.1 1.1	2.2	2.1	2.1	5.8	3.7	4.6	6.9	6.8	6.9	10.1	9.4	9.7	
8378	NO SURV	IVING PUR	S ON DAY	0 PO	STPARTU	M									
8379	1.5 1	.4 1.4	2.4	2.5	2.5	3.7	3.7	3.7	6.3	6.4	6.3	8.9	8.8	8.9	
8380	1.9 1	.9 1.9	3.6	3.4	3.5	5.6	5.5	5.5	8.9	8.9	8.9	13.9	13.4	13.7	
8381	1.4 1	.3 1.3	NO SI	JRVIVII	NG PUPS	ON DA	Y 1 PO	STPARTU	M						
8382	1.3 1	.3 1.3	2.2	2.2	2.2	3.5	3.6	3.6	5.1	5.5	5.4	6.5	6.9	6.8	
8383	NO SURV	IVING PUR	S ON DAY	0 PO	STPARTU	M									
8384	NOT PRE	GNANT													
8385	NO SURV	IVING PUR	S ON DAY	0 PO	STPARTU	M									
8386	FOUND D	EAD ON DA	Y 8 OF 0	GESTAT:	ION										
8387a	1.3 1	.1 1.2	2.2	2.2	2.2	3.9	3.8	3.8	5.6	5.2	5.4	8.2	7.6	7.9	
8388a	1.5 1	.6 1.5	2.1	2.3	2.2	3.7	3.9	3.8	5.9	6.2	6.0	7.7	8.4	8.1	
8389	1.4 1	.4 1.4	NO ST	JRVIVII	NG PUPS	ON DA	Y 1 PO	STPARTU	M						
8390	1.5 1	.4 1.4	2.6	2.5	2.5	4.1	4.0	4.1	6.9	6.8	6.9	11.2	10.6	11.0	

 $[\]texttt{M} = \texttt{MALE} \qquad \texttt{F} = \texttt{FEMALE} \qquad \texttt{T} = \texttt{TOTAL} \ (\texttt{SUM OF PUP WEIGHTS/NUMBER OF LIVE PUPS}) \qquad \texttt{DAY} = \texttt{DAY POSTPARTUM}$

ALL WEIGHTS WERE RECORDED IN GRAMS (G). MEAN LITTER WEIGHTS INCLUDE ONLY WEIGHTS OF LIVE PUPS.

a. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

TABLE 29 (PAGE 1): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

	1	2	3	4	 5	 6	 7	8	9	10	11	12	1.2	1.4	1 5	1.0	 17	1.8	19
PUP #						ь 				10		12	13	14	15	16 		18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE (GROUP	I		CONT	ROL				0 MG	/KG/DA	Y			DAY	0 POST	PARTUM
8311	1.5	1.4	1.5	1.4	1.3	1.5	1.5	1.6	1.5	1.2	1.4	1.2	1.2	1.2	1.3	1.2			
8312	1.6	1.6		1.6		1.4				1.3	1.5	1.5	1.4	1.5	1.6				
8313	NOT :	PREGNA	NT																
8314	1.7	1.6	1.5	1.6	1.8	1.5	1.6	1.8	1.6	1.7	1.8								
8315	1.7	1.6	1.5	1.5	1.4	1.5	1.6	1.5	1.6	1.5	1.6	1.6	1.6						
8316	1.7	1.6	1.6	1.2	1.5	1.3	1.3	1.5	1.6	1.5	1.5	1.6	1.5	1.5					
8317	1.6	1.8	1.7	1.6	1.5	1.7	MS	1.6	1.8	1.6	1.6	1.7							
8318	1.9	2.0	2.0	2.1															
8319	1.7	1.4	1.6	1.5	1.7	1.6	1.6	1.6	1.6	1.5	1.5	1.6	1.5						
8320	1.8	1.8	1.7	1.8	1.8														
8321	1.7	1.6	MS	MS	1.8	1.8	FS												
8322	1.5	1.5	1.4	1.5	1.4	1.5	1.4	1.5	1.4	1.5	1.5	1.5	1.4	1.5					
8323	1.4	1.4	1.2	1.5	1.5	1.5	1.2	1.4	1.2	1.3	1.3	1.4	1.5	1.2	1.4	1.2			
8324	1.8	1.6	1.7	1.5	1.4	1.6	1.6	1.5	1.6	1.7	1.7	1.6							
8325	1.6	1.5	1.6	1.5	1.5	1.4	1.4	1.3	1.5	1.5	1.5	1.5	1.4	1.4					
8326	1.6	1.5	1.8	1.7	1.5	1.6	1.7	1.7	1.5	1.7	1.6	1.6	1.4	1.5	1.6				
8327	1.4	1.6	1.7	1.8	1.6	1.7	1.8	1.5	1.6	1.7	1.5	1.6							
8328	1.4	1.5	1.4	1.5	1.6	1.4	1.3	1.6	1.5	1.5	1.4	1.9	1.5						
8329	1.9																		
8330	1.6	1.7	1.4	1.7	1.7	1.3	1.5	1.7	1.6	1.5	1.6	1.6	1.5	1.2					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

NUMBER FOLLOWING "SECOND LETTER" INDICATES THE DAY POSTPARTUM THE EVENT OCCURRED.

TABLE 29 (PAGE 2): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #																		0 POST	PARTUM
8331											1.2								
8332	1.7	1.7	1.6	1.5	1.6	1.6	1.5	1.6	1.4	1.4	1.4	1.4	1.6						
8333	1.3	1.4	1.4	1.3	1.3	1.4	1.4	1.2	1.4	1.3	1.3	1.4	1.3	1.3					
8334	1.3	1.5	1.4	1.3	1.3	1.7	1.4	1.4	1.6	1.4	1.5	1.4							
8335	1.5	1.6	1.6	1.4	1.5	1.6	1.5	1.3	1.4	1.4	1.4	1.0	1.5						
8336	1.8	1.6	1.9	1.6	1.8	1.5	1.8	1.7	1.5	1.2	1.5	1.8							
8337	1.5	1.6	1.4	1.4	1.5	1.4	1.5	1.5	1.4	1.5									
8338	1.5	1.5	1.5	1.3	1.4	1.4	1.5	1.5	1.4	1.4	1.4	1.5	1.4						
8339	1.4	1.3	1.1	1.4	1.4	1.5	1.4	1.3	1.5	1.4	1.2	1.5	1.2	1.2					
8340	1.6	1.7	1.5	1.5	1.6	1.5	1.5	1.6	1.5	1.5	1.5	1.6							
8341	1.4	1.4	1.4	1.5	1.5	1.4	1.4	1.4	1.3	1.5	1.3	1.3	1.2						
8342	1.6	1.7	1.7	1.5	1.7	1.7	1.5	1.6	1.6	1.6	1.6	1.6							
8343	1.4	1.4	1.4	1.8	1.6	1.6	1.4	1.6	1.6	1.8	1.4								
8344	1.3	1.2	1.6	1.6	1.5	1.5	1.4	1.5	1.4	1.4	1.4	1.3	1.6	1.5	1.4				
8345	NOT :	PREGNAI	T																
8346	1.6	1.5	2.0	1.6	1.6	1.8	1.6	1.9	1.6	1.5	1.5	1.5	1.7						
8347	1.6	1.5	1.5	1.5	1.6	1.5	1.6	1.6	1.5	1.4	1.5	1.5	1.6	1.5	1.6	1.4	1.4		
8348	1.5	1.6	1.6	1.7	1.5	1.7	1.5	1.5	1.4	1.4	1.3	1.6	1.3	1.3	1.4				
8349	1.5	1.6	1.7	1.6	1.6	1.8	1.6	1.6	1.6	1.5	1.6	1.6							
8350	1.3	1.5	1.4	1.3	1.3	1.3	1.4	1.4	1.3	1.4	1.1	1.3	1.4	1.5					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

NUMBER FOLLOWING "SECOND LETTER" INDICATES THE DAY POSTPARTUM THE EVENT OCCURRED.

TABLE 29 (PAGE 3): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL DO	OSAGE (GROUP 1	III		MIDD	LE DOS.						DAY				0 POSTI	PARTUM
8351	1.3	1.2	1.4	1.1	1.3	1.3	1.3	1.3									1.2	1.4	
8352	1.5	1.5	1.4	1.4	1.5	1.5	1.5	1.4	1.6	1.5	1.3								
8353	1.0	1.2	0.8	1.1	1.1	1.1	1.2	1.2	0.9	1.1	1.1	1.2	1.1	1.2	1.2	FS			
8354	1.2	1.2	1.3	1.3	1.4	1.2	1.1	UU	MU	1.2	1.2	1.2	1.1	FD 0	MU	FU	FD 0	UU	UU
8355	1.4	1.3	1.3	1.2	1.3	1.4	1.2	1.1	1.2	1.3	1.2	1.2	1.1	1.2					
8356	1.5	1.5	1.4	1.6	1.5	1.4	1.4	1.3	1.5	1.4	1.4	UU							
8357	1.5	1.4	1.5	1.5	1.2	1.3	1.1	1.5	FS	UD 0									
8358	1.4	1.1	1.3	1.3	1.2	1.3	1.3	1.1	1.3	1.3	US								
8359	1.4	1.2	1.4	1.2	1.2	1.1	1.3	1.3	1.1	1.1	1.1	1.2	1.2	1.0	1.2	1.2			
8360	1.3	1.4	1.5	1.3	1.3	1.4	1.3	1.3	1.3	1.3	1.4	1.4	1.4	FS					
8361	FOUNI	DEAD	ON DAY	7 13 OF	GEST	ATION													
8362	1.2	1.1	1.0	1.0	1.0	0.9	1.0	1.0	1.1	1.0	1.0	1.0	1.0	1.0	FU				
8363	2.2	2.1																	
8364	1.5	1.3	1.4	1.6	1.4	1.4	1.3	1.3	1.3	1.3	1.4	1.3	1.3	1.3					
8365	1.5	1.6	1.5	1.6	1.5	1.5	1.5	1.5											
8366	1.5	1.5	1.4	1.5	1.4	1.4	1.5	1.5	1.5	1.4	1.4	1.4	1.2						
8367	1.2	1.0	1.3	1.1	1.3	1.0	1.2	1.1	1.2	1.1	1.2	0.9							
8368	1.5	1.7	1.4	1.5	1.5	1.4	1.5	1.6	1.5	1.5	1.4	1.6	1.4						
8369	1.6	1.5	1.6	1.5	1.5	1.6	1.5	1.6	1.4	1.4	1.4	0.8							
8370	1.5	1.3	1.5	1.5	1.4	1.3	1.3	1.3	1.3	MS	1.4	1.5	1.4	1.4	1.4				

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 4): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP	IV		HIGH	DOSAG						'DAY			DAY	0 POST	PARTUM
8371 8372		1.4 PREGNA		1.4	1.4	1.4	1.4	1.3											
8373	1.3	1.4	1.5	1.4	1.4	1.4	1.4	1.4	1.4	1 4	1.3								
8374	1.5	1.5	1.5	1.3	1.5	1.4	1.3	1.4	1.3	1.5	1.5								
8375	MS	MS	FS	1.0	1.0		1.5		1.0	1.0									
8376	1.2	1.3	1.4	1.3	1.4	1.4	1.4	1.3	1.3	1.4	1.3	1.2							
8377	1.3	1.0	1.1	1.1	1.1	1.2	1.0	1.0	1.1	1.2	1.2								
8378	MS	MS	MS	MS	MS	FD 0	FS	FS	FS	US									
8379	1.5	1.6	1.5	1.5	1.4	1.3	1.2	1.5	1.5	1.4	1.4	1.5	1.5	FD 0					
8380	1.9	1.9	1.9	1.9	1.9	1.8	1.9												
8381	1.3	1.5	1.3	MD 0	1.3	1.4	1.2	1.2	1.6	0.9	FD 0	FS							
8382	1.4	1.3	1.3	1.2	1.4	1.4	1.4	1.2	1.4	1.2	1.5	1.2							
8383	MD 0	MD 0	MD 0	MD 0	MS	FD 0	FD 0	FS											
8384	NOT	PREGNA	NT																
8385	MD 0	MD 0	FD 0	MS	FD 0	MU	MU	MU	FD 0	FD 0	FU	FU	FU	UU					
8386	FOUN	D DEAD	ON DA	Y 8 OF	GESTA	TION													
8387	1.5	1.2	1.2	1.2	1.2	1.1	1.1	0.9	1.0	1.2		FD 0	FD 0	FD 0					
8388	1.5	1.6	1.3	1.6	1.6	MD 0	MS	1.6	1.6	1.5	1.5								
8389	1.4	MU	MU	1.4	FU	FU													
8390	1.7	1.4	1.4	1.6	1.4	1.5	1.5	1.3	1.4	1.5	1.3	FS	FS						

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 5): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATEI	RNAL D	OSAGE	GROUP :									/KG/DA	· · · · · ·			DAY	4 POST	PARTUM
8311	2.4	2.6	2.9	2.7	2.9								2.4	2.5	2.3	2.5			
8312	2.7	2.8	2.5	2.7	2.7	2.7	2.5	2.1	2.3	2.6	2.3	2.4	2.5	2.5	FD 3				
8313	NOT 1	PREGNAI	TV																
8314	3.5	3.5	3.6	3.2	3.4	3.0	3.6	3.1	3.5	2.9	3.1								
8315	2.7	2.9	3.0	2.7	2.9	2.6	2.9	3.0	2.6	2.9	2.5	2.8	2.9						
8316	3.2	2.9	2.7	2.8	2.9	3.0	2.5	2.7	3.0	2.8	2.3	2.5	2.7	2.9					
8317	3.0	3.1	3.2	3.3	3.3	3.0	MS	3.1	3.1	2.8	3.1	3.1							
8318	3.8	3.7	3.6	3.8															
8319	3.0	3.1	2.6	2.9	2.8	3.0	2.9	2.9	2.9	2.9	2.8	3.1	2.8						
8320	4.0	4.1	3.8	3.8	4.1														
8321	3.6	3.7	MS	MS	3.8	3.8	FS												
8322	2.4	2.3	2.6	2.7	2.7	2.8	2.3	2.4	2.6	2.7	2.4	2.2	2.7	2.4					
8323	2.7	2.4	2.2	2.4	2.5	2.6	2.8	2.5	2.3	2.3	2.9	2.5	2.5	2.7	3.0	2.5			
8324	3.4	3.4	3.4	2.8	3.4	3.2	3.5	3.4	3.7	3.3	3.3	3.2							
8325	2.9	2.8	2.7	2.7	2.9	3.0	2.7	2.7	2.7	2.5	2.8	2.5	2.7	2.8					
8326	3.0	2.7	2.9	3.2	2.9	2.7	2.7	2.9	2.9	3.4	2.5	3.0	3.1	2.8	3.1				
8327	2.9	2.7	2.6	1.7	2.8	2.7	3.1	2.5	2.5	2.6	2.6	2.3							
8328	3.0	2.5	2.8	3.2	2.8	2.5	2.9	2.6	2.8	2.9	2.9	2.6	2.7						
8329	FD 3																		
8330	2.7	2.9	2.7	2.8	1.7	2.6	2.9	2.7	2.8	2.6	2.3	2.4	2.5	2.7					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 6): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	1,1,	12	13	14	15	16	17	18	19
MOUSE/ LITTER #			OSAGE (DAY				4 POST	PARTUM
8331	3.0	3.0	2.5	2.7		3.1	2.9			2.4				2.9					
8332	2.9	3.0	3.4	3.1	3.1	3.2	3.0	2.9	3.1	3.0	3.1	2.8	FD 3						
8333	2.7	3.0	2.8	2.6	2.7	2.9	2.9	2.8	2.7	2.7	2.7	3.0	2.8	2.5					
8334	2.6	2.5	2.5	2.7	3.4	3.0	2.6	2.8	3.0	2.8	2.5	2.8							
8335	3.2	2.9	3.4	3.0	3.2	2.8	3.2	3.2	2.3	2.8	3.2	2.9	2.8						
8336	3.7	3.2	3.3	3.3	3.8	2.8	3.3	3.2	3.6	3.2	2.9	FM 1							
8337	2.8	3.0	2.9	2.8	2.9	3.1	3.0	2.9	2.9	2.9									
8338	2.9	3.1	3.1	3.1	3.0	3.2	3.0	3.0	2.8	2.8	2.8	2.8	2.9						
8339	2.5	3.1	2.8	2.4	2.7	2.5	2.7	2.5	2.3	2.4	2.3	2.5	2.6	FM 1					
8340	3.1	3.1	3.0	3.0	3.0	2.7	2.8	2.5	2.9	3.1	3.1	3.0							
8341	2.8	2.6	2.6	2.6	2.5	2.4	2.3	2.3	2.4	2.6	2.3	2.7	2.1						
8342	2.8	3.1	2.6	3.2	2.7	2.9	3.0	3.0	2.7	3.0	2.6	2.8							
8343	1.4	2.9	2.7	2.6	2.7	2.5	2.7	2.4	2.5	2.6	2.8								
8344	2.8	2.4	2.8	1.8	2.4	2.6	2.5	2.5	2.8	2.6	2.7	2.7	3.0	2.7	2.7				
8345	NOT 1	PREGNAI	NT																
8346	2.7	3.0	2.8	3.0	2.6	2.8	2.7	2.7	3.0	2.3	2.9	2.9	2.8						
8347	2.5	2.5	2.3	2.3	2.4	2.5	2.4	2.5	2.2	2.1	2.3	2.2	2.3	2.4	2.4	2.5	2.4		
8348	2.6	2.6	2.9	2.6	2.6	2.4	2.7	2.9	3.0	3.0	2.6	2.4	2.9	2.5	2.5				
8349	3.1	3.1	3.0	3.1	3.1	3.1	3.0	2.6	2.9	3.0	3.1	3.0							
8350	2.3	2.3	2.5	2.4	2.5	2.5	2.2	2.4	2.6	2.4	2.6	2.3	2.6	1.8					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 7): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP										DAY			DAY	4 POST	PARTUM
8351				1.6	2.3	2.0	2.2	2.2	2.6	2.4	2.7						2.4	2.1	
8352	2.3		2.0	1.8	2.0	1.9	1.8	2.1	2.0	1.4	2.1		1 0	1 0					
8353	0.8	1.7	1.7	2.1	1.9	1.6	2.0	1.7	1.8	1.6	1.8	1.5		1.9	1.5	FS			****
8354	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	UU	MU	FM 1	FM 1	FM 1	FM 1	FD 0	MU	FU	FD 0	UU	UU
8355	1.1	1.7	1.4	1.8	1.6	1.9	1.9	2.0	2.0	1.8	2.2	1.6	1.9	1.9					
8356	2.5	2.3	2.4	2.6	2.0	2.5	2.7	2.3	2.4	2.2	2.4	UU							
8357	2.6	2.6	2.6	2.0	2.6	2.1	2.3	2.7	FS	UD 0	***								
8358	MD 1	MD 1	MD 1	MD 1	MD 1	FD 1	US	0 0	0 0	0 0	0 0	0 0							
8359	2.0	2.2	1.9	2.1	2.0	2.1	2.1	2.1						2.2	2.0	2.2			
8360	1.6	1.8	1.5	1.6	1.7	1.0	1.8	1.5	1.8	1.9	1.7	1.8	1.8	FS					
8361			ON DA																
8362	1.9	1.9	1.9	1.9	1.9	1.9	1.7	1.9	2.0	1.8	1.6	1.8	1.6	1.8	FU				
8363	4.0	4.0																	
8364	1.6	1.2							MD 4	MD 2	1.0	1.1	1.6	1.3					
8365	3.3		3.5	3.3	3.3	3.4	3.2												
8366	2.9		3.0	2.9	2.6	2.8	2.7						2.6						
8367	2.0	2.2	2.0	2.2	2.0	2.1	1.7	1.8	2.0	1.9	2.2	FD 1							
8368	2.3		2.5	2.1	2.0	2.3	2.6	2.2	2.5	2.5	2.4	2.3	2.0						
8369	2.1	2.7	2.6	2.2	2.4	2.9	2.6	2.8	2.3	2.6	2.1	FM 1							
8370	2.4	2.6	2.3	2.1	2.0	2.4	2.3	2.2	2.4	MS	2.1	1.9	2.4	2.1	2.4				

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 8): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP	IV		HIGH	DOSAG	ЭЕ			500	MG/KG/	'DAY			DAY	4 POST	PARTUM
8371 8372		1.5 PREGNA		1.5	1.2	MD 2	1.4	1.6	1.9	1.3	1.8	FD 1							
8373	2.3	2.3	1.9	2.3	2.5	2.3	MD 2	2.2	2.0	2.0	2.3								
8374	2.8	2.9	2.6	3.0	2.7	3.0	3.0	2.9	2.8	2.6									
8375	MS	MS	FS																
8376	2.2	2.4	2.3	2.2	2.3	2.5	2.3	2.0	2.3	2.2	2.2	2.2							
8377	2.1	2.2	2.4	2.2	2.2	2.5	2.0	2.1	2.3	1.8	1.8								
8378	MS	MS	MS	MS	MS	FD 0	FS	FS	FS	US									
8379	2.4	2.4	2.3	2.5	2.7	2.4	2.8	2.2	2.6	2.6	2.5	2.4	2.5	FD 0					
8380	3.6	3.7	3.4	3.5	3.5	3.5	3.3												
8381	MD 1	MD 1	MD 1	MD 0	FD 1	FD 1	FD 1	FD 1	FD 1	FD 1	FD 0	FS							
8382	2.6	2.2	1.7	2.1	2.1	2.0	2.0	2.4	2.6	2.6	2.2	2.1							
8383	MD 0	MD 0	MD 0	MD 0	MS	FD 0	FD 0	FS											
8384	NOT	PREGNA	NT																
8385	MD 0	MD 0	FD 0	MS	FD 0	MU	MU	MU	FD 0	FD 0	FU	FU	FU	UU					
8386	FOUN	DEAD	ON DA	Y 8 OF	GESTA	TION													
8387	2.4	2.4	2.2	2.0	2.4	2.1	2.1	2.2	FD 3	FM 2	FD 0	FD 0	FD 0	FD 0					
8388	2.1	1.6	2.6	MD 4	MD 3	MD 0	MS	2.3	2.4	2.3	2.3								
8389	MM 1	MU	MU	FM 1	FU	FU													
8390	2.9	2.4	2.5	2.7	2.4	MM 1	2.5	2.6	2.4	2.4	FM 1	FS	FS						

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 9): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP :	I		CONT	ROL				0 MG	/KG/DA	Y			DAY	7 POST	PARTUM
8311 8312		3.8			3.1	3.7		4.1 3.2					3.6 2.9		3.5	3.4			
8313		PREGNAI		3.0	5.0	5.7	3.3	3.2	3.0	3.0	3.0	3.3	2.5	3.3	ID J				
8314		4.9		5.1	5.2	4.3	5.3	5.0	5.1	4.7	4.7								
8315	4.2	4.0	4.2	3.9	3.9	3.5	4.1	4.1	3.7	3.9	4.4	4.2	3.9						
8316	4.5	4.4	4.2	3.9	4.2	3.5	4.0	3.5	3.4	3.8	3.6	3.6	4.2	4.4					
8317	4.8	4.5	4.7	4.8	4.6	4.3	MS	4.3	4.7	4.8	4.3	4.9							
8318	5.6	5.9	5.6	5.9															
8319	4.1	4.3	4.6	3.9	4.3	4.4	4.2	4.3	4.5	4.0	4.5	4.4	4.1						
8320	6.4	6.3	6.1	6.5	6.2														
8321	5.5	5.4	MS	MS	5.9	5.5	FS												
8322	4.3	3.9	3.5	4.0	4.2	3.6	4.1	4.0	3.7	3.9	3.9	4.1	4.2	3.4					
8323	4.0	3.9	4.4	3.6	3.6	4.1	4.1	4.2	3.6	3.9	4.2	3.5	3.7	3.6	4.1	3.1			
8324	5.3	5.6	5.3	5.5	5.3	5.2	4.5	5.0	5.3	5.0	5.3	5.4							
8325	4.3	4.0	4.0	4.0	4.0	4.0	4.2	3.9	3.8	3.8	4.0	3.5	3.8	4.1					
8326	4.8	4.5	3.9	4.4	4.4	4.9	3.8	4.5	4.3	4.0	3.7	4.3	3.8	4.3	4.3				
8327	4.0	2.7	4.1	3.9	4.2		4.3	3.9	4.0	3.8	3.8	3.5							
8328	4.2	4.4	3.8	4.0	3.6	MM 7	4.3	4.3	3.8	4.1	3.3	4.0	3.6						
8329	FD 3																		
8330	4.3	4.3	3.6	3.9	2.4	4.0	4.0	3.8	3.9	3.9	4.1	4.1	3.3	3.9					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 10): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #														DAY			DAY	7 POST	PARTUM
8331		4.3		4.3			4.5		3.6					3.7					
8332	4.5	4.5	4.5	4.3	4.7	4.3	4.4	4.2	4.6	4.5	4.6	4.6	FD 3						
8333	3.9	3.9	4.0	3.9	3.5	4.3	4.3	4.3	4.1	3.5	4.2	3.7	3.6	4.2					
8334	4.0	4.6	4.0	3.8	3.9	4.1	4.6	3.6	4.0	4.4	4.5	3.6							
8335	5.0	4.5	4.3	5.1	4.7	4.2	4.7	4.3	3.1	4.2	4.9	4.6	3.9						
8336	4.5	4.7	5.1	4.6	5.2	4.4	5.3	4.4	4.5	5.0	4.5	FM 1							
8337	4.6	4.4	4.6	4.5	4.7	4.7	4.5	4.5	4.7	4.6									
8338	4.6	4.5	4.4	4.4	4.6	4.7	4.3	4.3	4.1	4.4	4.4	4.5	4.4						
8339	3.8	4.4	3.6	3.9	4.2	3.8	3.4	3.7	3.7	3.6	3.6	3.7	3.3	FM 1					
8340	4.5	4.4	4.5	4.5	4.5	4.0	4.3	4.5	4.6	4.4	4.8	3.8							
8341	3.7	3.1	3.4	4.2	3.9	3.5	3.5	3.2	4.0	3.2	3.6	3.2	3.2						
8342	3.7	4.4	4.2	3.7	3.8	4.0	3.8	3.5	3.7	3.9	3.4	3.7							
8343	4.0	3.9	4.1	4.0	4.1	4.2	4.0	3.7	3.7	4.0	3.8								
8344	3.9	3.2	3.5	MD 5	3.6	4.0	3.3	3.9	3.7	4.1	3.8	4.0	3.6	4.2	4.1				
8345	NOT :	PREGNAI	TV																
8346	4.2	4.3	4.3	3.8	3.7	4.3	3.6	4.3	4.6	4.1	4.1	4.1	4.0						
8347	3.6	3.2	2.8	3.6	2.6	3.5	3.6	3.6	3.1	3.4	3.3	3.4	3.5	2.8	2.8	3.2	3.1		
8348	5.3	3.6	4.0	4.1	3.9	4.7	4.2	3.8	3.8	3.3	3.9	4.0	3.8	3.6	3.4				
8349	4.8	4.4	4.8	4.8	4.9	5.0	4.3	4.3	4.3	4.3	4.4	4.5							
8350	3.7	3.9	3.7	3.9	3.7	3.5	3.9	3.7	3.7	3.9	3.8	3.7	2.7	4.1					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 11): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP	III		MIDE	LE DOS	SAGE			350	MG/KG/	DAY			DAY	7 POST	PARTUM
8351 8352	3.2 3.6	3.1	2.4	3.4	3.3 2.7	3.4 3.2	3.5 2.8	4.1 3.0	3.8	3.2 3.4	3.4 2.5	2.8	3.5	3.5	4.2	3.0	2.4	3.2	
8353	2.4	2.9	1.5	2.3	2.1	2.6	2.3	2.3	2.7	2.6	2.3	2.7	2.5	2.4	FD 5	FS			
8354	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	UU	MU	FM 1	FM 1	FM 1	FM 1	FD 0	MU	FU	FD 0	UU	UU
8355	1.2	3.1	3.2	3.3	3.4	3.2	MM 5	2.6	3.3	3.3	2.8	3.3	2.9	3.0					
8356	4.2	4.0	4.1	4.3	3.5	3.8	4.0	3.7	3.7	3.9	4.3	UU							
8357	4.4	4.4	3.6	4.5	4.5	4.5	3.8	3.8	FS	UD 0									
8358	MD 1	MD 1	MD 1	MD 1	MD 1	FD 1	FD 1	FD 1	FD 1	FD 1	US								
8359	3.1	3.0	3.2	2.8	3.1	2.9	3.1	3.4	2.9	3.1	3.2	3.0	3.3	1.7	3.0	2.9			
8360	2.6	2.6	2.8	2.8	2.5	2.7	2.7	2.7	2.4	2.7	2.8	2.6	FD 5	FS					
8361	FOUN	ID DEAD	ON DA	Y 13 C	F GEST	'ATION													
8362	2.9	2.9	2.9	3.1	3.0	3.6	3.0	3.0	3.0	2.9	2.5	3.0	2.7	2.5	FU				
8363	5.8	5.9																	
8364	2.4	1.4	1.9	1.6	2.3	2.0	2.7	1.5	MD 4	MD 2	2.7	1.9	2.8	2.1					
8365	5.3	5.2	5.2	5.3	5.3	5.0	5.2	5.2											
8366	4.1	4.7	4.4	3.8	4.2	4.3	4.3	4.3	4.2	4.3	4.0	3.9	2.9						
8367	3.7	3.4	3.4	3.1	2.9	3.3	3.0	3.7	3.2	3.1	3.4	FD 1							
8368	3.0	4.0	3.3	4.2	3.3	4.0	3.7	4.1	3.6	3.8	3.8	3.9	3.1						
8369	3.9		4.7	4.2	4.3	3.5	4.6	3.9	3.8	4.3	4.7	FM 1							
8370	4.2	3.8	3.2	3.9	3.0	3.3	3.3	4.0	3.9	MS	3.1	3.9	3.9	3.6	3.6				

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 12): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL I	OSAGE	GROUP	IV		HIGH	DOSAG	E			500	MG/KG/	/DAY			DAY	7 POST	PARTUM
8371	2.4	1.9	2.3	2.5	2.6	MD 2	2.8	2.6	1.9	2.1	2.3	FD 1							
8372	NOT	PREGNA	NT																
8373	3.7	3.1	4.0	3.8	4.1	3.9	MD 2	3.3	3.6	3.5	4.0								
8374	4.5	3.9	4.1	4.6	4.4	4.0	4.0	4.5	4.4	4.4									
8375	MS	MS	FS																
8376	3.4	4.1	3.9	3.5	3.9	3.7	3.9	3.6	4.0	3.7	3.7	3.7							
8377	3.8	13.1	3.8	4.0	4.1	3.3	4.3	3.7	3.7	3.7	3.3								
8378	MS	MS	MS	MS	MS	FD 0	FS	FS	FS	US									
8379	4.0	3.6	3.4	3.7	4.1	3.5	3.4	3.6	3.8	4.0	3.9	3.8	3.2	FD 0					
8380	5.8	5.3	5.4	5.7	5.5	5.4	5.6												
8381	MD 1	MD 1	MD 1	MD 0	FD 1	FD 1	FD 1	FD 1	FD 1	FD 1	FD 0	FS							
8382	3.8	4.0	2.8	3.6	3.4	2.8	4.0	3.3	3.3	4.0	3.8	3.9							
8383	MD 0	MD 0	MD 0	MD 0	MS	FD 0	FD 0	FS											
8384	NOT	PREGNA	NT																
8385	MD 0	MD 0	FD 0	MS	FD 0	MU	MU	MU	FD 0	FD 0	FU	FU	FU	UU					
8386	FOUN	ID DEAD	ON DA	Y 8 OF	GESTA	TION													
8387	3.9	4.0	4.1	3.7	3.5	4.1	3.7	3.7	FD 3	FM 2	FD 0	FD 0	FD 0	FD 0					
8388	2.9	3.7	4.4	MD 4	MD 3	MD 0	MS	4.2	3.5	4.0	3.9								
8389	MM 1	MU	MU	FM 1	FU	FU													
8390	4.3	4.6	4.0	4.1	3.9	MM 1	3.8	4.0	4.2	3.8	FM 1	FS	FS						

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

TABLE 29 (PAGE 13): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	 16	 17	18	19
MOUSE/					_								/ /						
LITTER #	MATE	RNAL I	OSAGE	GROUP	Ι		CONT	ROL				0 MG	/KG/DA	Y			DAY	14 POS	TPARTUM
8311	5.4	6.4	5.7	4.7	6.6	4.9	6.2	6.0	4.7	5.9	5.5	5.5	5.6	5.3	5.0	5.3			
8312	6.4			6.5		6.7	5.6	5.8	6.3	6.6	5.7	5.8	5.7		FD 3				
8313		PREGNA																	
8314	7.8	8.5	8.3	8.2	8.6	8.6	8.8	8.2	8.6	8.9	8.1								
8315	6.7	7.0	7.4	6.3	7.3	6.6	6.9	6.7	6.9	6.9	6.7	6.9	6.8						
8316	6.3	7.3	7.0	6.7	7.2	6.7	6.2	7.1	6.7	6.5	5.2	6.6	6.4	6.2					
8317	7.6	7.7	7.3	8.1	7.7	7.9	MS	7.4	7.6	7.7	7.8	8.1							
8318	11.1	11.2	11.2	10.9															
8319	7.1	7.5	7.1	7.4	6.2	7.0	7.3	7.3	7.7	6.6	7.0	6.6	6.9						
8320	12.1	11.5	11.8	11.5	11.8														
8321	10.5	10.7	MS	MS	11.2	11.1	FS												
8322	6.5	6.4	6.4	7.0	6.5	6.8	6.8	6.9	5.5	6.3	6.6	6.1	6.8	6.1					
8323	7.0	5.5	6.3	5.7	5.5	6.1	7.3	6.4	5.7	6.2	5.8	6.2	4.6	7.2	5.5	4.8			
8324	8.1	8.0	8.3	8.3	8.5	7.1	8.7	7.9	8.4	8.1	8.3	7.8							
8325	6.2	6.6	6.7	6.3	6.6	6.4	6.1	6.3	5.7	6.3	6.9	5.9	5.8	6.5					
8326	5.6	7.1	7.2	7.0	7.5	7.4	5.5	6.6	6.6	6.4	6.9	6.8	6.3	6.3	6.2				
8327	5.9	6.3	4.3	5.9	6.2	6.0	6.6	6.3	5.5	6.0	6.0	5.9							
8328a	5.7	6.0	6.8	6.7	6.3	MM 7	5.9	6.0	6.9	6.8	6.6	6.3	6.1						
8329	FD 3																		
8330	6.5	7.0	6.4	6.6	6.6	6.5	6.4	6.7	6.2	6.0	4.0	6.3	6.3	6.5					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

a. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 29 (PAGE 14): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL DO	OSAGE	GROUP	II		LOW	DOSAGE				100	MG/KG/	'DAY			DAY	14 POS	TPARTUM
8331	7.2	6.8	5.5	6.5	6.5	6.9	5.6	6.5	6.2	6.1	6.0	5.6	5.8	5.4	4.3				
8332	7.5	7.1	7.2	7.0	6.8	6.3	6.8	6.9	6.9	7.2	6.9	6.8	FD 3						
8333	5.7	6.5	6.4	6.3	6.0	6.4	6.6	6.1	6.2	6.2	6.4	6.1	6.9	6.9					
8334	8.2	8.3	6.8	8.4	7.4	6.7	7.3	6.5	8.0	6.6	7.4	FM11							
8335	7.4	7.3	7.4	7.5	7.5	8.1	7.9	7.2	6.5	5.5	7.7	7.6	7.9						
8336	7.2	7.3	8.1	8.0	7.6	8.0	7.4	7.1	7.6	6.8	8.0	FM 1							
8337	7.5	7.6	7.3	7.3	7.9	7.6	7.4	7.7	7.6	7.3									
8338	8.6	8.3	8.1	8.3	9.0	8.3	8.4	7.3	8.3	8.3	7.6	7.7	7.9						
8339	7.7	6.6	7.4	7.0	6.7	6.7	5.6	6.2	6.7	6.7	5.6	6.2	6.8	FM 1					
8340	7.3	6.5	7.1	6.4	6.4	7.3	6.7	7.1	6.6	7.8	6.1	7.6							
8341	5.4	6.2	6.7	4.9	5.9	6.3	6.8	6.2	6.0	5.6	5.4	5.1	5.7						
8342	7.3	7.0	6.9	6.0	6.7	6.7	6.3	6.9	6.9	6.8	7.4	7.1							
8343a	5.5	5.8	4.9	5.3	5.1	5.1	4.9	5.0	5.7	4.9	5.0								
8344b	5.0	4.7	5.1	MD 5	5.3	4.0	4.9	4.6	3.9	4.5	5.6	5.2	5.2	5.4	4.8				
8345	NOT 1	PREGNAI	T																
8346a	5.3	4.5		4.9	MD14	5.3	4.8	4.6	4.8	5.7	4.5	4.0	4.6						
8347a	3.9	3.8	5.4	4.3	4.1	4.3	4.2	4.5	MD14	4.0	4.2	4.4	4.5	4.5	4.6	3.4	3.6		
8348a	5.7	6.0	4.7	3.9	4.2	4.0	5.0	4.7		4.3	5.0	4.3	3.9						
8349	7.6	6.8	7.5	7.2	7.6	7.4	7.2	7.4	7.3	6.9	7.1	7.1			- •				
8350	5.9		6.6	5.5	6.3	6.6	5.9	6.2	5.7	6.3		6.1	5.2	4.4					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

a. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

b. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 29 (PAGE 15): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #			OSAGE									350							TPARTUM
8351	6.9	3.8	5.1	5.9	5.5	5.4	5.3	5.5	4.8	5.8	5.9						4.5		
8352	6.9	6.8	5.0	7.2	6.5	8.1	7.0	7.2	5.7	6.8	5.7								
8353	5.5	6.0	4.9	4.3	5.3	4.7	MM11	5.4	6.0	4.3	5.2	4.1	4.9	5.1		FS			
8354	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	UU	MU	FM 1	FM 1	FM 1	FM 1	FD 0	MU	FU	FD 0	UU	UU
8355	6.5	6.5	6.4	5.8	5.0	MM 8	MM 5	6.3	6.9	6.6	7.0	5.9	7.0	6.2					
8356	7.2		6.6	7.4	7.1	6.9	7.3	6.9	7.5	6.7	6.8	UU							
8357	8.6	8.5	8.6	7.9	8.5	8.7	7.9	7.7	FS	UD 0									
8358	MD 1	MD 1	MD 1	MD 1	MD 1	FD 1	FD 1	FD 1	FD 1	FD 1	US								
8359	5.1	5.2	4.9	5.2	5.0	5.2	5.7	4.9	5.7	5.3	6.3	5.2	5.3	6.4	5.7	FM 9			
8360	5.6	6.0	5.3	6.3	6.1	6.0	6.2	5.8	5.9	5.3	6.0	5.8	FD 5	FS					
8361	FOUN	D DEAD	ON DA	Y 13 0	F GEST	ATION													
8362	6.4	6.4	5.0	6.0	5.8	4.7	5.7	5.9	5.9	5.6	5.7	6.2	5.2	5.4	FU				
8363	10.1	10.0																	
8364	6.3	5.5	4.5	6.4	6.5	5.5	4.4	6.1	MD 4	MD 2	3.7	7.0	5.5	5.3					
8365	8.7	8.8	9.1	8.7	8.5	8.3	8.8	8.8											
8366	6.0	6.5	5.9	6.1	6.4	5.9	6.3	6.2	6.1	6.4	6.2	6.0	4.2						
8367	5.6	5.6	5.6	6.1	5.7	5.6	5.2	5.3	5.8	4.8	5.5	FD 1							
8368	6.7	6.5	6.1	6.5	6.2	6.5	5.2	5.9	6.3	6.2	6.7	5.9	7.1						
8369	5.9	6.4	5.5	6.2	6.8	5.1	6.5	5.3	5.9	6.6	6.4	FM 1							
8370	5.1	6.6	6.4	6.3	5.8	5.1	6.0	6.3	6.2	MS	4.9	5.0	6.1	6.3	5.2				

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 16): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP	IV		HIGH	DOSAG	ЭЕ			500	MG/KG/	'DAY			DAY	14 POS	TPARTUM
8371 8372		6.2 PREGNA	4.3	6.0	6.3	MD 2	6.6	5.1	6.4	6.0	6.7	FD 1							
8373				8.0	7.8	7.7	MD 2	6.9	7.4	8 5	7.5								
8374	7.8		7.6	7.9			8.1	8.1		8.3	, . 0								
8375	MS	MS	FS																
8376	7.3	6.4	6.9	7.1	6.9	7.3	7.2	6.5	6.6	7.1	6.7	7.0							
8377	7.2	7.1	7.1	6.8	6.5	6.8	6.4	7.0	6.9	7.6	6.3								
8378	MS	MS	MS	MS	MS	FD 0	FS	FS	FS	US									
8379	6.6	7.0	5.9	6.1	6.0	6.0	6.5	6.0	6.2	6.6	5.3	7.3	6.7	FD 0					
8380	8.9	8.8	8.7	9.1	8.8	9.1	8.9												
8381	MD 1	MD 1	MD 1	MD 0	FD 1	FD 1	FD 1	FD 1	FD 1	FD 1	FD 0	FS							
8382	4.3	5.9	5.0	5.8	5.6	4.5	5.1	5.3	5.9	5.5	5.3	6.2							
8383	MD 0	MD 0	MD 0	MD 0	MS	FD 0	FD 0	FS											
8384	NOT	PREGNA	NT																
8385	MD 0	MD 0	FD 0	MS	FD 0	MU	MU	MU	FD 0	FD 0	FU	FU	FU	UU					
8386	FOUN	ID DEAD	ON DA	Y 8 OF	GESTA	TION													
8387a	5.7	5.4	5.6	5.9	5.4	5.2	4.9	5.1	FD 3	FM 2	FD 0	FD 0	FD 0	FD 0					
8388a	6.2	6.7	4.7	MD 4	MD 3	MD 0	MS	6.3	6.3	5.5	6.5								
8389	MM 1	MU	MU	FM 1	FU	FU													
8390	7.5	6.7	7.1	6.9	6.7	MM 1	6.7	6.5	7.1	6.8	FM 1	FS	FS						

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

a. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

TABLE 29 (PAGE 17): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL I	OSAGE	GROUP	I		CONT	ROL				0 MG	J/KG/DA	Y			DAY	20 POS	TPARTUM
8311	5.1	7.8	8.8	8.5	9.1	6.0	6.9	5.9	6.0	5.7	7.3	7.3	6.5	6.8	6.9	7.1			
8312	8.7	9.6	8.9	9.2	10.2	9.9	8.7	8.7	8.2	9.1	9.2	8.5	10.2	9.1	FD 3				
8313	NOT	PREGNA	NT																
8314a	11.8	12.4	11.8	12.5	11.9	10.9	12.5	11.7	12.2	12.0	10.8								
8315	10.2	10.9	9.6	10.4	10.7	11.4	10.0	11.1	10.7	10.2	10.9	10.2	10.2						
8316a	9.4	10.0	9.4	10.5	9.1	10.3	10.0	7.5	8.7	10.7	8.7	9.6	9.1	8.8					
8317	11.5	11.0	11.0	12.8	11.6	11.2	MS	11.3	11.7	11.4	12.4	11.8							
8318	16.8	16.5	16.5	17.5															
8319	8.8	10.8	10.7	10.8	10.0	10.3	10.8	10.5	10.2	10.5	11.2	10.7	9.6						
8320	17.8	17.7	16.8	17.2	16.5														
8321	16.9	16.1	MS	MS	16.8	16.3	FS												
8322	10.0	9.3	10.1	11.3	9.6	10.5	9.4	10.8	9.6	10.0	7.7	9.2	10.1	9.6					
8323	8.2	7.5	8.6	10.6	8.4	9.3	7.8	10.3	9.0	6.5	6.5	9.1	9.8	10.8	9.7	8.4			
8324	12.8	10.1	13.5	12.9	12.6	12.9	13.9	13.2	12.4	12.3	11.7	12.7							
8325	9.6	8.9	8.5	9.1	8.0	9.0	9.0	8.2	9.0	7.9	7.8	8.4	9.5	9.3					
8326	7.8	7.6	11.6	10.5	10.7	9.2	11.3	9.3	9.7	10.7	9.2	8.7	11.6	9.7	9.8				
8327	5.8	9.0	8.8	8.6	9.5	9.2	9.6	7.8	8.6	9.0	9.5	8.5							
8328b	9.4	6.5	9.5	7.3	8.8	MM 7	7.0	6.2	7.5	8.9	9.5	10.4	10.2						
8329	FD 3																		
8330	9.9	11.5	10.8	9.9	10.2	11.0	10.2	10.9	9.9	10.1	9.5	9.4	9.6	6.0					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.

b. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 29 (PAGE 18): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL D	OSAGE	GROUP														20 POS	TPARTUM
8331	8.0	8.8	10.9	7.9	9.8					9.9				9.6					
8332	10.2	9.8	11.2	11.6	10.5	10.9	10.4	10.6	10.4	10.6	10.6	10.1	FD 3						
8333a	7.2	7.6	8.1	8.6	8.1	8.6	8.1	8.6	7.7	9.4	9.0	7.6	9.1	7.9					
8334	9.7	12.0	9.7	9.2	10.2	11.9	10.9	10.7	9.8	11.5	10.4	FM11							
8335	11.9	10.9	10.9	11.5	13.3	11.9	12.6	8.6	9.5	11.3	11.1	11.4	11.3						
8336	11.8	13.0	11.3	12.6	9.9	10.8	12.3	10.8	12.9	10.8	11.0	FM 1							
8337	10.2	11.1	10.6	10.6	11.2	11.1	11.1	11.4	11.3	11.1									
8338	12.4	13.1	12.3	10.9	12.9	13.1	12.8	12.5	10.6	11.4	12.2	11.7	11.5						
8339	9.3	8.0	9.7	9.2	10.6	11.3	10.3	8.0	10.5	9.2	10.3	9.6	8.9	FM 1					
8340	8.8	8.9	10.9	10.4	9.6	9.6	11.9	9.8	8.3	11.4	10.7	10.6							
8341	6.5	9.2	8.1	7.8	10.2	9.6	9.5	7.1	8.4	8.6	7.4	8.1	FD18						
8342	10.4	9.7	8.4	10.6	9.9	10.8	9.4	9.9	9.4	9.3	10.4	10.0							
8343b	6.8	8.4	7.7	7.0	8.7	6.2	6.1	6.0	7.9	7.1	9.2								
8344c	6.8	8.1	4.4	MD 5	8.3	7.2	7.5	6.7	6.4	6.1	6.8	8.0	FD16	FD15	FD15				
8345	NOT	PREGNA	NT																
8346b	4.5	6.2	5.2	MD16	MD14	4.9	5.9	7.1	FD16	FD16	FD16	FD15	FD15						
8347b	5.1	7.7	MD17	MD17	MD16	MD16	MD15	MD15	MD14	5.0	5.7	FD17	FD16	FD16	FD16	FD15	FD15		
8348b	4.3	5.9	5.4	7.4	9.7	9.5	7.2	MD18	MD16	MD15	7.5	FD16	FD16	FD16	FD15				
8349	9.1	10.2	11.0	10.8	10.8	11.5	10.7	10.2	10.0	10.6	10.3	10.3							
8350	8.1	7.3	8.2	7.5	7.4	7.7	7.6	6.8	8.9	4.7	7.2	8.2	7.0	7.3					

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

- a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.
- b. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.
- c. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 29 (PAGE 19): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #																			TPARTUM
8351	6.3	7.0	4.6	6.2	6.3	10.0	7.6	7.9	7.5		8.1						7.9		
8352	5.8	7.3		10.2	9.9	8.9	10.4	9.9	8.2	9.0	11.5								
8353	5.5	6.5	6.9	5.8	6.4	7.1	MM11	7.2	6.6	5.3	6.3	6.1	5.7			FS			
8354	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	MM 1	UU	MU	FM 1	FM 1	FM 1	FM 1	FD 0	MU	FU	FD 0	UU	UU
8355	9.0	7.4	6.7	8.0	5.3	MM 8	MM 5	8.1	6.7	8.2	8.7	8.4	8.2	8.0					
8356	11.0	11.3	10.0	10.6	10.4	9.1	11.2	10.8	10.2	9.8	9.7	UU							
8357	5.1	9.5	7.6	5.1	7.7	6.5	11.1	9.2	FS	UD 0									
8358	MD 1	MD 1	MD 1	MD 1	MD 1	FD 1	FD 1	FD 1	FD 1	FD 1	US								
8359	6.3	6.3	5.7	5.2	5.9	5.4	5.7	8.1	6.2	7.2	7.5	6.2	5.9	5.8	6.0	FM 9			
8360	7.4	7.8	8.3	8.5	7.5	8.3	7.1	8.0	8.2	8.1	8.2	7.2	FD 5	FS					
8361	FOUN	D DEAD	ON DA	Y 13 C	F GEST	ATION													
8362	6.5	7.8	8.3	8.2	8.5	8.2	6.6	7.3	7.9	8.5	7.9	6.6	7.6	7.3	FU				
8363	15.9	16.8																	
8364	6.9	5.7	4.7	5.7	8.3	7.2	9.1	7.8	MD 4	MD 2	9.0	7.4	9.5	7.4					
8365	14.6	14.4	14.8	14.7	12.8	13.8	13.6	14.1											
8366	9.1	8.9	9.6	8.9	9.5	5.3	9.2	10.2	9.2	8.6	9.2	9.3	8.8						
8367	6.6	7.3	6.8	8.1	6.9	8.1	7.3	5.7	6.1	7.4	7.6	FD 1							
8368	9.3	8.6	8.6	8.8	8.4	6.5	8.6	8.1	9.9	9.3	8.8	8.7	7.9						
8369	8.7	9.6	11.1	9.9	8.7	10.3	10.1	8.2	9.0	8.4	10.3	FM 1							
8370	6.1	8.1	9.1	8.8			7.8		8.7	MS	6.9	6.3	5.9	8.1	9.5				

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)

TABLE 29 (PAGE 20): PUP BODY WEIGHTS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #	MATE	RNAL I	OSAGE	GROUP	IV		HIGH	DOSAG	E			500	MG/KG/	'DAY			DAY	20 POS	TPARTUM
8371 8372		8.3 PREGNA	8.6 NT	8.4	9.5	MD 2	8.6	6.7	8.9	8.7	9.4	FD 1							
8373 8374	10.3	11.4	11.5								10.4								
8375 8376 8377	MS 8.7 10.0	MS 9.9 10.4	FS 10.7 9.4	10.0	10.4	10.0	9.9 8.7	10.8	9.1 9.5	9.8	10.1	10.0							
8378 8379	MS 7.9	MS 8.5	MS 10.5	MS 8.3	MS 8.5	FD 0 9.9	FS 7.6	FS 9.7	FS 9.3	US 9.3		9.7	7.4	FD 0					
8380 8381 8382	14.9 MD 1 4.9	13.2 MD 1 8.4	13.4 MD 1 6.1	14.1 MD 0 8.8	14.0 FD 1 5.0	13.5 FD 1 8.5	12.8 FD 1 6.6	FD 1	FD 1 8.1	FD 1 6.8	FD 0								
8383 8384	MD 0	MD 0 PREGNA	MD 0	MD 0		FD 0	FD 0	FS	0.1	0.0	0.2	0.4							
8385 8386		ID DEAL	FD 0 ON DA				MU	MU		FD 0	FU	FU	FU	UU					
8387a 8388a 8389	7.7 8.1 MM 1	7.3 8.9 MU	9.2 6.0 MU	8.5 MD 4 FM 1	5.8 MD 3 FU	9.1 MD 0 FU	7.0 MS	8.5 7.6		FM 2 8.7		FD 0	FD 0	FD 0					
8390	10.5	11.2	11.2	11.4	10.7	MM 1	12.4	9.9	11.4	10.6	FM 1	FS	FS						

ALL WEIGHTS WERE RECORDED IN GRAMS (G).

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

a. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

TABLE 30 (PAGE 1): PUP VITAL STATUS AND SEX FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
MOUSE/ LITTER #		MATE	RNAL	DOSAG	E GRO	DUP I				CONT	TROL						0 M	G/KG/	DAY
8311 8312 8313	мА		M A									F A F A				F A			
8314a 8315	M A M A	M A M A	M A M A	M A	M A	M A	M A	M A	M A	M A	M A	M A							
8316a 8317 8318	мА	M A M A F A	M A	M A								F A F A	F A	F A					
8319 8320 8321	мА	M A M A M A	F A	F A	F A			F A	F A	F A	F A	F A	F A						
8322 8323	M A M A	M A M A	M A M A	M A M A	F A M A	F A M A	M A M A	M A	M A	F A	F A	F A F A			F A	F A			
8324 8325 8326	M A		M A	M A	МА	M A	F A	F A	F A	F A	FΑ	F A F A			F A				
8327 8328b 8329		M A M A										F A F A	F A						
		мА	мА	мА	F A	F A	F A	F A	F A	F A	F A	F A	F A	F A					

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

- a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.
- b. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 30 (PAGE 2): PUP VITAL STATUS AND SEX FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
MOUSE/ LITTER #		MATE	ERNAL	DOSA	GE GRO	OUP II	:			LOW	DOSA	GE					100	MG/KG	/DAY	
8332 8333a 8334 8335 8336 8337 8338 8339 8340 8341	M A M A M A M A M A M A M A M A M A M A	M A A M A A M A A M A A M A A M A A M A A M A A M A A M A A M A A M A	M A A M A M M A M A M A M A M A M A M A M A M A M A M A M A M A M A M A M A M M A M A M A M A M A M A M A M A M A M A M A M A M A M A M A M M A M A M M M A M	M A M A M A M A M A M A M A M A M A M A	M A M A M A M A M A M A	M A A M A A M A A M A A M A A M A A M A A M A A M A A M A A M A A M M A M A M M M A M	M A F A M A F A M A F A M A M A M A F A M A M	F A F A F A F A F A F A F A	F A F A F A F A F A F A	F A F A F A F A F A F A	F A F A F A F A F A F A	F A F A F A F A F A F A	FD 3 FA FA FA FA	FΑ						
8343b 8344c 8345 8346b 8347b 8348b 8349	M A M A NOT M A M A M A M A	M A M A PREGN M A M A M A M A	M A F A NANT M A MD17 M A M A	M A MD 5 MD16 MD17 M A M A	M A F A MD14 MD16	F A F A MD16 M A M A	F A F A MD15 F A F A	F A F A MD15 MD18 F A	F A F A FD16 MD14 MD16 F A	F A F A FD16 F A MD15 F A	F A F A FD16 F A F A	F A FD15 FD17 FD16 F A	FD16 FD15 FD16 FD16	FD16 FD16	FD16 FD15	FD15	FD15			

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE

- a. Mouse was found dead on day 16 of lactation; pups remained on study to day 20 postpartum.
- b. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.
- c. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum.

TABLE 30 (PAGE 3): PUP VITAL STATUS AND SEX FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP #	‡ 1	2	3	4	5	6	7	8	3	9 1	0 :	11	12	1	.3	14	15	16		17	18	1	9
MOUSE/ LITTER #	‡																			350	MG/F	KG/D	AY
8351 8352	M A M A						M A M A						F A	F	A	F A	F A	F A	F	A	F A		
8353 8354							MM11										FD 5 M U			0	UU	U	U
8355 8356							MM 5								A	F A							
8357 8358	M A	M A	M A	M A	M A	F A	F A	F A	F	S UD	0		0 0										
8359 8360	M A	M A	M A	. M A	M A	M A	MA FA	F F	F	A F	A F	A					F A	FM 9					
8361	FOU	ND DE.	AD ON	DAY	13 OF	GEST	ATION																
8362 8363	M A	M A					M A										F U						
8364 8365							M A			4 MD	2 M	А	FA	. F	A	FA							
8366 8367							F A M A							_	A								
8368 8369							M A F A							F	A								
8370	M A	M A	M A	. M A	FA	F A	F A	F A	F.	M A	S F	A	F A	F	A	F A	F A						

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE
SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)
NUMBER FOLLOWING "SECOND LETTER" INDICATES THE DAY POSTPARTUM THE EVENT OCCURRED.

TABLE 30 (PAGE 4): PUP VITAL STATUS AND SEX FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

PUP # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 LITTER # MATERNAL DOSAGE GROUP IV HIGH DOSAGE 500 MG/KG/DAY ______ 8371 MAMAMAFAMD2FAFAFAFAFD18372 NOT PREGNANT 8373 MAMAMAMAMAD2 FAFAFA 8374 MAMAMAFAFAFAFAFAFA 8375 M S M S F S 8376 MAMAMAMAFAFAFAFAFAFA 8377 MAMAMAMAFAFAFAFAFAFA 8378 MS MS MS MS FD O FS FS US 8379 MAMAMAMAMAFAFAFAFAFAFAFAFA 8380 MAMAMAFAFAFA 8381 MD 1 MD 1 MD 1 MD 0 FD 1 FD 1 FD 1 FD 1 FD 1 FD 0 F S 8382 MAMAFAFAFAFAFAFAFAFAFA 8383 MD 0 MD 0 MD 0 MD 0 M S FD 0 FD 0 F S 8384 NOT PREGNANT 8385 MD 0 MD 0 FD 0 M S FD 0 M U M U M U FD 0 FD 0 F U F U U U 8386 FOUND DEAD ON DAY 8 OF GESTATION 8387a M A M A M A M A F A F A F A F A F D 3 FM 2 FD 0 FD 0 FD 0 8388a M A M A M A MD 4 MD 3 MD 0 M S F A F A F A F A 8389 $\,$ MM $\,$ 1 $\,$ M $\,$ U $\,$ M $\,$ U $\,$ F $\,$ U $\,$ F $\,$ U 8390 MAMAMAMAMM1 MAFAFAFAFM1 FS FS

FIRST LETTER -- M-MALE, F-FEMALE, U-SEX UNDETERMINABLE
SECOND LETTER -- A-ALIVE, S-STILLBORN, U-UNCERTAIN, D-DIED, M-MISSING (PRESUMED CANNIBALIZED)
NUMBER FOLLOWING "SECOND LETTER" INDICATES THE DAY POSTPARTUM THE EVENT OCCURRED.

a. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum.

TABLE 31 (PAGE 1): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)					OBSERVATIONS a
I					
0	8311	DT. 20	P	13	ALT. TISSUES APPEARED NORMAL.
0	8312	DI. 20	D	13	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
	8313	DG 23	ND	13	ALL TISSUES ADDEADED NORMAL
	0313	DO 23	141	10	THE TIOCOLO TELETICES NOTATE.
	8314	DL 16	P	13	
					ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8315	DL 20	P	13	STERNUM: BENT PROXIMAL TO XIPHOID PROCESS.
					ALL OTHER TISSUES APPEARED NORMAL.
	8316	DL 16	P	13	FOUND DEAD ON DAY 16 OF LACTATION.
					ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF
					AUTOLYSIS.
	8317	DL 20	P	13	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
	8318	DL 20			
	8319				ALL TISSUES APPEARED NORMAL.
	8320		P	13	ALL TISSUES APPEARED NORMAL.
	8321	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8322	DL 20	P		ALL TISSUES APPEARED NORMAL.
	8323	DL 20			ALL TISSUES APPEARED NORMAL.
	8324	DL 20	P		ALL TISSUES APPEARED NORMAL.
	8325	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8326	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8327	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8328	DL 14	P	13	FOUND DEAD ON DAY 14 OF LACTATION.
					ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8329	DL 3	Р	13	SACRIFICED ON DAY 3 OF LACTATION DUE TO NO SURVIVING PUPS. ALL TISSUES APPEARED NORMAL.
					ALL TISSUES APPEARED NORMAL.

DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

P = PREGNANT NP = NOT PREGNANT

a. Refer to the individual clinical observations table (Table 24) for external observations confirmed at necropsy.

b. Mouse was not dosed on the day of delivery.

TABLE 31 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)	MOUSE NUMBER	DAY OF NECROPSY	PREGNANCY STATUS	DOSES ADMINISTERED	
II					
100	8331	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8332	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8333	DL 16	P	13	FOUND DEAD ON DAY 16 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR SLIGHT DEGREE OF AUTOLYSIS.
	8334	DL 20	P	1.3	ALL TISSUES APPEARED NORMAL.
	8335	DL 20	P		ALL TISSUES APPEARED NORMAL.
	8336	DL 20	P		ALL TISSUES APPEARED NORMAL.
	8337	DL 20	P	12b	ALL TISSUES APPEARED NORMAL.
	8338	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8339	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8340	DL 20	Р	13	STERNUM: BENT PROXIMAL TO XIPHOID PROCESS. ALL OTHER TISSUES APPEARED NORMAL.
	8341	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8342	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8343	DL 13	Р	13	FOUND DEAD ON DAY 13 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8344	DL 14	Р	13	FOUND DEAD ON DAY 14 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8345	DG 23	NP	13	ALL TISSUES APPEARED NORMAL.
	8346	DL 13	Р	13	FOUND DEAD ON DAY 13 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8347	DL 13	Р	13	FOUND DEAD ON DAY 13 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.

DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

P = PREGNANT NP = NOT PREGNANT

a. Refer to the individual clinical observations table (Table 24) for external observations confirmed at necropsy.

b. Mouse was not dosed on the day of delivery.

TABLE 31 (PAGE 3): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)					OBSERVATIONS a
II (CONT.) 100	8348	DL 13	P	13	FOUND DEAD ON DAY 13 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8349 8350	DL 20 DL 20	P P	13 13	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
III 350	8351	DL 20	P	12b	ALL TISSUES APPEARED NORMAL.
555	8352 8353	DL 20 DL 20	P P	13 12b	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
	8354	DL 1	P	13	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS. LIVER: ALL LOBES, NUMEROUS TAN AREAS (PINPOINT TO 4 MM X 3 MM). ALL OTHER TISSUES APPEARED NORMAL.
				13	
	8356 8357	DL 20 DL 20	P P	13 13	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
	8358	DL 1	Р	12b	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS. ALL TISSUES APPEARED NORMAL.
		DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8360	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8361	DG 13	P	7	FOUND DEAD ON DAY 13 OF GESTATION (DEATH OCCURRED OVERNIGHT). ALL TISSUES APPEARED NORMAL. GRAVID UTERINE WEIGHT: 2.78 G. UTERINE CONTENTS: 14 IMPLANTATION SITES (14 EMBRYOS IN UTERO).c
			P P		ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.

DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

P = PREGNANT NP = NOT PREGNANT

a. Refer to the individual clinical observations table (Table 24) for external observations confirmed at necropsy.

b. Mouse was not dosed on the day of delivery.

c. Viability of embryos at the time of maternal death could not be determined. Early developmental ages precluded further evaluation.

TABLE 31 (PAGE 4): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)	MOUSE NUMBER	DAY OF NECROPSY	PREGNANCY STATUS		OBSERVATIONS a
III (CONT.)					
350	8364	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8365	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8366	DL 20 DL 20	P	13	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
	8367	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8368	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8369	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8370	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
IV					
500		DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8372			13	ALL TISSUES APPEARED NORMAL.
				13	
	8374	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8375	DL 0	P	13	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS.
					INTESTINES: DISTENDED WITH GAS. ALL OTHER TISSUES APPEARED NORMAL.
	8376	DL 20	P	12b	ALL TISSUES APPEARED NORMAL.
	8377	DL 20	P	12b	ALL TISSUES APPEARED NORMAL.
	8378	DL 0	Р	13	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS. LIVER: ALL LOBES, NUMEROUS TAN AREAS (PINPOINT TO 7 MM X 6 MM). ALL OTHER TISSUES APPEARED NORMAL.
	0270	DL 20	D	1.0	ALL MICCIEC ADDEADED MODMAL
	8380	DL 20 DL 20	P	13 13	ALL TISSUES APPEARED NORMAL. ALL TISSUES APPEARED NORMAL.
	8380	DL 20	P	13	ALL TISSUES APPEARED NORMAL.
	8381	DL 1	Р	13	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS. LIVER: MEDIAN LOBE, NUMEROUS TAN AREAS (PINPOINT TO 2 MM X 3 MM). ALL OTHER TISSUES APPEARED NORMAL.
	8382	DL 20	P	13	ALL TISSUES APPEARED NORMAL.

DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

P = PREGNANT NP = NOT PREGNANT

a. Refer to the individual clinical observations table (Table 24) for external observations confirmed at necropsy.

b. Mouse was not dosed on the day of delivery.

TABLE 31 (PAGE 5): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

DOSAGE GROUP DOSAGE (MG/KG/DAY)	NUMBER	NECROPSY			OBSERVATIONS a
IV (CONT.)			P	13	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS. LIVER: ALL LOBES, NUMEROUS TAN AREAS (PINPOINT TO 10 MM X 3 MM). ALL OTHER TISSUES APPEARED NORMAL.
	8384	DG 23	NP	13	ALL TISSUES APPEARED NORMAL.
	8385	DL 0	Р	13	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS. LIVER: LEFT LATERAL LOBE, TAN AREA (2 MM X 3 MM). ALL OTHER TISSUES APPEARED NORMAL.
	8386	DG 8	P	2	FOUND DEAD ON DAY 8 OF GESTATION (DEATH OCCURRED OVERNIGHT). ALL TISSUES APPEARED NORMAL FOR SLIGHT DEGREE OF AUTOLYSIS. UTERINE CONTENTS: 12 IMPLANTATION SITES (12 EMBRYOS IN UTERO).b
	8387	DL 13	Р	13	FOUND DEAD ON DAY 13 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8388	DL 13	Р	13	FOUND DEAD ON DAY 13 OF LACTATION. ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	8389	DL 1	Р	13	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS. LIVER: NUMEROUS TAN AREAS (PINPOINT TO 3 MM X 1 MM). ALL OTHER TISSUES APPEARED NORMAL.
	8390	DL 20	P	13	ALL TISSUES APPEARED NORMAL.

DG = DAY OF PRESUMED GESTATION DL = DAY OF LACTATION

P = PREGNANT NP = NOT PREGNANT

a. Refer to the individual clinical observations table (Table 24) for external observations confirmed at necropsy.

b. Viability of embryos at the time of maternal death could not be determined. Early developmental ages precluded further evaluation.

TABLE 32 (PAGE 1): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

	STATUS	TERMINAL BODY WEIGHT	WT.	REL. % TBW	
	GROUP I	CON	TROL		0 MG/KG/DAY
8311		47.7		6.61	
8312	P	43.5	3.441	7.91	
8315	P	44.0	3.009	6.84	
8317	P	44.0	3.247	7.38	
8318	P	39.9	2.770	6.94	
	GROUP II	LOW	DOSAGE		100 MG/KG/DAY
8331		45.9		6.92	
8332	P	37.8	2.789	7.38	
8334	P P	44.7	3.240	7.25	
8335	P	43.2	3.725	8.62	
8336	P	43.7	3.070	7.02	
DOSAGE	GROUP III	MID	DLE DOSAG	E	350 MG/KG/DAY
8351	P	52.6	3.605		
8352	P	44.4	2.877	6.48	
8353	P			7.03	
8355	P	40.7	3.170	7.79	
8356	P	46.5	3.600	7.74	
DOSAGE	GROUP IV	HIG	H DOSAGE		500 MG/KG/DAY
		44.2		6.36	
8373	P	38.7	2.917	7.54	
8374	P	43.9	2.872	6.54	
8376	P	37.3	3.080	8.26	
8377	P	36.6	2.650	7.24	

TABLE 32 (PAGE 2): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - INDIVIDUAL DATA - FO GENERATION FEMALE MICE

MICE THA	T WERE NOT	PREGNANT, F	OUND DEAD OR SACRIFICED DUE TO NO SURVIVING PUPS a
	PREGNANCY STATUS	LIVER ABS. WT.	
	GROUP I		CONTROL 0 MG/KG/DAY
8313		1.599	
8314	P	2.907	FOUND DEAD ON DAY 16 OF LACTATION
8316	P P	3.029	FOUND DEAD ON DAY 16 OF LACTATION
	P		FOUND DEAD ON DAY 14 OF LACTATION
8329	P	1.291	SACRIFICED ON DAY 3 OF LACTATION DUE TO NO SURVIVING PUPS
DOSAGE	GROUP II		LOW DOSAGE 100 MG/KG/DAY
8333	P	2 598	FOUND DEAD ON DAY 16 OF LACTATION
8343	P	2.292	FOUND DEAD ON DAY 13 OF LACTATION
8344	P		FOUND DEAD ON DAY 14 OF LACTATION
8345	NP	1.646	
8346	P	2.587	FOUND DEAD ON DAY 13 OF LACTATION
8347	P	2.877	FOUND DEAD ON DAY 13 OF LACTATION
8348	P	2.761	FOUND DEAD ON DAY 13 OF LACTATION
	GROUP III		MIDDLE DOSAGE 350 MG/KG/DAY
8354	P	3.740	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS
8358	P	3.469	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS
8361	P		FOUND DEAD ON DAY 13 OF GESTATION
	GROUP IV		HIGH DOSAGE 500 MG/KG/DAY
8372	NP		
8375	P	2.085	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS
8378	P	3.173	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS
8381	P	3.572	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS
8383		3.447	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS
8384	NP	2.210	
8385	P	4.663	SACRIFICED ON DAY 0 OF LACTATION DUE TO NO SURVIVING PUPS
8386	P	1.806	FOUND DEAD ON DAY 8 OF GESTATION
8387	P	2.895	FOUND DEAD ON DAY 13 OF LACTATION
8388	P	2.384	FOUND DEAD ON DAY 13 OF LACTATION
8389	P	4.034	SACRIFICED ON DAY 1 OF LACTATION DUE TO NO SURVIVING PUPS

ALL WEIGHTS WERE RECORDED IN GRAMS (G). ABS. WT. = ORGAN WEIGHT.

a. Values for mice that were not pregnant, found dead or sacrificed due to no surviving pups were excluded from summarization and statistical analyses.

TABLE 33 (PAGE 1): CLINICAL OBSERVATIONS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP		DAY (S) POSTPARTUM	OBSERVATION	S a
I				
0	8311	16	16/16 PUPS:	UNGROOMED COAT.
	8319	0	1/13 PUPS:	TAIL, SCAB (PINPOINT).
II				
100	8331	0- 5	1/15 PUPS:	TIP OF TAIL, RED.
	8344b	16-17	11/11 PUPS:	DEHYDRATION, MILD.
	8346c	15	10/10 PUPS:	DEHYDRATION, MODERATE.
				DEHYDRATION, MODERATE.
		18-19	6/ 6 PUPS:	DEHYDRATION, MILD.
	8347c	15	12/12 PUPS:	DEHYDRATION, MILD.
				DEHYDRATION, MODERATE.
				DEHYDRATION, MODERATE.
		20	4/ 4 PUPS:	DEHYDRATION, MILD.
	8348c	15	13/13 PUPS:	DEHYDRATION, MODERATE.
				DEHYDRATION, MODERATE.
		18-20	8/ 8 PUPS:	DEHYDRATION, MILD.
	8350	9	1/14 PUPS:	DEHYDRATION, MILD.

a. Tabulation restricted to adverse observations; all other pups appeared normal.

b. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum. Clinical observations of pups after day 14 postpartum were excluded from summarization and statistical analyses.

c. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum. Clinical observations of pups after day 13 postpartum were excluded from summarization and statistical analyses.

TABLE 33 (PAGE 2): CLINICAL OBSERVATIONS FROM BIRTH TO DAY 20 POSTPARTUM - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		DAY (S) POSTPARTUM	OBSERVATION	is a
III				
350	8351			RIGHT HINDLIMB, SCAB (2 MM X 1 MM). DEHYDRATION, MILD.
	8353		1/14 PUPS:	TIP OF TAIL MISSING; TIP OF TAIL, RED. TIP OF TAIL MISSING; TIP OF TAIL, RED. DEHYDRATION, MILD.
	8354	0	11/11 PUPS:	NOT NURSING; NOT NESTING.
	8355	4	1/14 PUPS:	DEHYDRATION, MILD.
	8360	4	1/13 PUPS:	DEHYDRATION, MODERATE.
	8369	0	1/12 PUPS:	TIP OF TAIL MISSING.
IV 500	8377	4- 5	1/11 PUPS:	LEFT SIDE OF BACK, SCAB (1 MM X 1 MM).
	8388b		7/ 7 PUPS:	DEHYDRATION, MODERATE. DEHYDRATION, MILD. CLINICAL OBSERVATIONS WERE NOT RECORDED.

a. Tabulation restricted to adverse observations; all other pups appeared normal.

b. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum. Clinical observations of pups after day 13 postpartum were excluded from summarization and statistical analyses.

TABLE 34 (PAGE 1): EYE OPENING BY LITTER - INDIVIDUAL DATA - F1 GENERATION LITTERS

POSTPARTUM DAY	10	11	12	13	14	15	16	17	
LITTER #	MATERN.	AL DOSAGI	E GROUP I		C	ONTROL			0 MG/KG/DAY
8311	0/16	0/16	0/16	0/16	3/16	14/16	16/16		
	0.0%	0.0%	0.0%	0.0%	18.8%	87.5%	100.0%		
8312	0/14	0/14	0/14	0/14	11/14	14/14			
	0.0%	0.0%	0.0%	0.0%	78.6%	100.0%			
8313	NOT PR	EGNANT							
8314	0/11	0/11	0/11	1/11	11/11				
	0.0%	0.0%	0.0%	9.1%	100.0%				
8315	0/13	0/13	0/13	0/13	12/13	13/13			
	0.0%	0.0%	0.0%	0.0%	92.3%	100.0%			
8316	0/14	0/14	0/14	0/14	12/14	14/14			
	0.0%	0.0%	0.0%	0.0%	85.7%	100.0%			
8317	0/11	0/11	0/11	0/11	11/11				
	0.0%	0.0%	0.0%	0.0%	100.0%				
8318	0/4	0/4	0/4	3/4	4/4				
	0.0%	0.0%	0.0%	75.0%	100.0%				
8319	0/13	0/13	1/13	6/13	13/13				
	0.0%	0.0%	7.7%	46.2%	100.0%				
8320	0/5	0/5	0/5	5/5					
	0.0%	0.0%	0.0%	100.0%					
8321	0/4	0/4	4/ 4						
	0.0%	0.0%	100.0%						
8322	0/14	0/14	0/14	0/14	4/14	14/14			
	0.0%	0.0%	0.0%	0.0%	28.6%	100.0%			
8323	0/16	0/16	0/16	4/16	12/16	16/16			
	0.0%	0.0%	0.0%	25.0%	75.0%	100.0%			
8324	0/12	0/12	0/12	12/12					
	0.0%	0.0%	0.0%	100.0%					
8325	1/14	1/14	1/14	7/14	14/14				
	7.1%	7.1%	7.1%	50.0%	100.0%				
8326	0/15	0/15	0/15	5/15	14/15	15/15			
	0.0%	0.0%	0.0%	33.3%	93.3%	100.0%			
8327	0/12	0/12	1/12	1/12	8/12	11/12	12/12		
	0.0%	0.0%	8.3%	8.3%	66.7%	91.7%	100.0%		
8328	0/12	0/12	0/12	2/12	9/12	12/12			
	0.0%	0.0%	0.0%	16.7%	75.0%	100.0%			
8329	NO SUR	VIVING P	JPS ON DAY	3 POSTP	ARTUM				
8330	0/14	0/14	0/14	1/14	10/14	13/14	14/14		
	0.0%	0.0%	0.0%	7.1%	71.4%	92.8%	100.0%		

TABLE 34 (PAGE 2): EYE OPENING BY LITTER - INDIVIDUAL DATA - F1 GENERATION LITTERS

LITTER # MATERNAL DOSAGE GROUP II LOW DOSAGE 100 MG/KG/DAY 8331 0/15 0/15 0/15 12/15 15/15 0.0% 0.0% 0.0% 0.0% 80.0% 100.0% 8332 0/12 0/12 0/12 4/12 12/12 0.0% 0.0% 0.0% 33.3% 100.0% 8333 0/14 0/14 0/14 1/14 14/14 0.0% 0.0% 0.0% 7.1% 100.0% 8334 0/12 0/11 0/11 2/11 9/11 11/11 0.0% 0.0% 0.0% 18.2% 81.8% 100.0% 8335 0/13 0/13 0/13 8/13 13/13 0.0% 0.0% 0.0% 0.0% 61.5% 100.0% 8336 0/11 0/11 0/11 3/11 11/11 0.0% 0.0% 0.0% 0.0% 27.3% 100.0%	
8331 0/15 0/15 0/15 12/15 15/15 0.0% 0.0% 0.0% 0.0% 100.0% 8332 0/12 0/12 0/12 4/12 12/12 0.0% 0.0% 0.0% 100.0% 8333 0/14 0/14 1/14 14/14 0.0% 0.0% 0.0% 7.1% 100.0% 8334 0/12 0/11 0/11 2/11 9/11 11/11 0.0% 0.0% 0.0% 18.2% 81.8% 100.0% 8335 0/13 0/13 0/13 8/13 13/13 0.0% 0.0% 0.0% 61.5% 100.0% 8336 0/11 0/11 0/11 3/11 11/11	
8332	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8333	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
8334 0/12 0/11 0/11 2/11 9/11 11/11 0.0% 0.0% 0.0% 18.2% 81.8% 100.0% 8335 0/13 0/13 0/13 8/13 13/13 0.0% 0.0% 0.0% 61.5% 100.0% 8336 0/11 0/11 0/11 3/11 11/11	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
8335 0/13 0/13 8/13 13/13 0.0% 0.0% 0.0% 61.5% 100.0% 8336 0/11 0/11 0/11 3/11 11/11	
0.0% 0.0% 0.0% 61.5% 100.0% 8336 0/11 0/11 3/11 11/11	
8336 0/11 0/11 3/11 11/11	
0.0% 0.0% 27.3% 100.0%	
8337 0/10 0/10 0/10 0/10 10/10 10/10	
0.0% 0.0% 0.0% 40.0% 100.0%	
8338 0/13 0/13 3/13 13/13	
0.0% 0.0% 23.1% 100.0%	
8339 0/13 0/13 1/13 12/13 13/13	
0.0% 0.0% 0.0% 92.3% 100.0%	
8340 0/12 0/12 0/12 7/12 12/12	
0.0% 0.0% 58.3% 100.0%	
8341 0/13 0/13 0/13 0/13 13/13	
0.0% 0.0% 0.0% 69.2% 100.0%	
8342 0/12 0/12 0/12 0/12 12/12 12/12	
0.0% 0.0% 0.0% 50.0% 83.3% 100.0%	
8343 0/11 0/11 0/11 6/11 11/11	
0.0% 0.0% 0.0% 54.5% 100.0%	
8344 0/14 0/14 0/14 1/14 10/13 11/11	
0.0% 0.0% 0.0% 7.1% 76.9% 100.0%	
8345 NOT PREGNANT	
8346 0/13 0/13 0/13 0/13 3/10 6/6	
0.0% 0.0% 0.0% 0.0% 30.0% 100.0%	
8347 0/17 0/17 0/17 0/17 1/12 6/ 7 4/ 4	
0.0% 0.0% 0.0% 0.0% 8.3% 85.7% 100.0%	
8348 1/15 1/15 1/15 1/15 11/15 11/13 9/ 9	
6.7% 6.7% 6.7% 73.3% 84.6% 100.0%	
8349 0/12 0/12 1/12 2/12 11/12 12/12	
0.0% 0.0% 8.3% 16.7% 91.7% 100.0%	
8350 0/14 0/14 0/14 1/14 9/14 13/14 14/14	
0.0% $0.0%$ $0.0%$ $7.1%$ $64.3%$ $92.8%$ $100.0%$	

TABLE 34 (PAGE 3): EYE OPENING BY LITTER - INDIVIDUAL DATA - F1 GENERATION LITTERS

		11					16		
LITTER #									
8351	0/18	0/18	0/18	0/18	0/18	8/18	15/18	18/18	
	0.0%	0.0%	0.0%	0.0%	0.0%	44.4%	83.3%	100.0%	
8352	0/11	0/11	0/11	0/11	6/11	11/11			
	0.0%	0.0%	0.0%		54.5%				
8353	0/14	0/13	0/13	0/13	0/13	0/13	3/13	13/13	
	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	23.1%	100.0%	
8354	NO SURV	VIVING PUI	PS ON DAY	1 POSTPA	ARTUM				
8355	0/12	0/12	0/12	1/12	4/12	12/12			
	0.0%	0.0%	0.0%	8.3%	33.3%	100.0%			
8356	1/11	1/11	1/11	1/11	9/11	11/11			
	9.1%	9.1%	1/11 9.1%	9.1%	81.8%	100.0%			
8357	0/8			3/8	8/8				
	0.0%		0.0%	37.5%	100.0%				
8358	NO SURV	VIVING PUI	S ON DAY	1 POSTPA	ARTUM				
8359	0/15	0/15	0/15	0/15	3/15	15/15			
8339	0.0%				20.0%				
8360	0.0%		0/12		2/12		12/12		
8380	0.0%		0.0%		16.7%		100.0%		
8361		DEAD ON DA				03.35	100.03		
0301	FOUND I	LAD ON DA	41 13 OF	GESTATIO	N				
8362	0/14	0/14	0/14	0/14	2/14	11/14	14/14		
	0.0%	0.0%	0.0%	0.0%	14.3%	78.6%	100.0%		
8363	0/2	0/2	0/2	2/2					
	0.0%		0.0%						
8364	0/12	0/12	0/12	0/12	0/12	0/12	5/12	12/12	
	0.0%	0.0%	0.0%		0.0%		41.7%		
8365	0/8		0/8	3/8	8/8				
	0.0%		0.0%	37.5%	100.0%				
8366	0/13		0/13	3/13	12/13	13/13			
0000	0.0%	. ,	0.0%	23.1%	92.3%	100.0%			
8367	0/11	0/11	0/11	0/11	0/11	1/11	11/11		
0307	0.0%		0.0%		0.0%	9.1%	100.0%		
8368	0.0%		0.0%	0.0%	2/13	13/13	100.00		
0300	0.0%		0.0%	0.0%	15.4%	100.0%			
8369	0.0%	0.0%	1/11		7/11				
8389						11/11			
0.270	0.0%		9.1%	9.1%	63.6%	100.0%	14/14		
8370	0/14		0/14		3/14	11/14	14/14		
	0.0%	0.0%	0.0%	0.0%	21.4%	78.6%	100.0%		

TABLE 34 (PAGE 4): EYE OPENING BY LITTER - INDIVIDUAL DATA - F1 GENERATION LITTERS

POSTPARTUM DAY	10	11	12	13	14	15	16	17		
LITTER #	MATERN	AL DOSAGE	GROUP IV	7	Н	IGH DOSAGI	Ξ		500 MG/KG/DAY	
8371	0/10	0/10	0/10	0/10	1/10	1/10	10/10			
8372	0.0% NOT PR	0.0% EGNANT	0.0%	0.0%	10.0%	10.0%	100.0%			
8373	0/10 0.0%		0/10 0.0%		5/10 50.0%	10/10 100.0%				
8374			0/10	2/10	10/10	100.00				
8375		VIVING PU								
8376	0/12 0.0%		0/12 0.0%		2/12 16.7%	12/12 100.0%				
8377	0/11 0.0%	0.0%	0/11 0.0%	9.1%	9/11 81.8%	11/11 100.0%				
8378	NO SUR	VIVING PU	PS ON DAY	O POSTPA	ARTUM					
8379	0/13 0.0%		0/13 0.0%		9/13 69.2%					
8380			1/ 7	7/ 7 100.0%						
8381		VIVING PU			ARTUM					
8382	0/12 0.0%	0/12 0.0%			7/12 58.3%		11/12 91.7%			
8383		VIVING PU								
8384	NOT PR	EGNANT								
8385	NO SUR	VIVING PU	PS ON DAY	0 POSTPA	ARTUM					
8386	FOUND	DEAD ON D.	AY 8 OF G	GESTATION						
8387	- , -		0/8 0.0%		0/8 0.0%	0/8 0.0%				
8388	0.0%		0.0%		0.0%		7/ 7			
8389		VIVING PU				14.3%	100.04			
8390	0/9 0.0%	0/9 0.0%	0/ 9 0.0%		6/ 9 66.7%	9/ 9 100.0%				

TABLE 35 (PAGE 1): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION PUPS

	SAGE GROUP SAGE (MG/KG/DAY)			OBSERVATI	ONS a
I					
0		8311	20	14 PUPS:	APPEARED NORMAL.
		8312	3	1 PUP:	FOUND DEAD. PARTIALLY CANNIBALIZED. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
			20	12 PUPS:	APPEARED NORMAL.
		8314	20	9 PUPS:	APPEARED NORMAL.
		8315	20	11 PUPS:	APPEARED NORMAL.
		8316			APPEARED NORMAL.
		8317	0	1 PUP:	STILLBORN. PARTIALLY CANNIBALIZED. ALL OTHER TISSUES APPEARED NORMAL.
			20	9 PUPS:	APPEARED NORMAL.
		8318	20	2 PUPS:	APPEARED NORMAL.
		8319	20	11 PUPS:	APPEARED NORMAL.
		8320	20	3 PUPS:	APPEARED NORMAL.
		8321	0	3 PUPS:	STILLBORN. ALL TISSUES APPEARED NORMAL.
			20	2 PUPS:	APPEARED NORMAL.
		8322	20	12 PUPS:	APPEARED NORMAL.
		8323	20	13 PUPS:	APPEARED NORMAL.
		8324	20	8 PUPS:	APPEARED NORMAL.
		8325	20	11 PUPS:	APPEARED NORMAL.
		8326	20	13 PUPS:	APPEARED NORMAL.
		8327	20	10 PUPS:	APPEARED NORMAL.
		8328	20	10 PUPS:	APPEARED NORMAL.
		8329	3	1 PUP:	FOUND DEAD. HEART AND LUNGS APPEARED NORMAL. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		8330	20	12 PUPS:	APPEARED NORMAL.

a. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation. Refer to the individual pup clinical observations table (Table 33) for external clinical observations confirmed at necropsy.

TABLE 35 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE (MG/KG/DAY)			OBSERVATI	CONS a
II				
100	8331	19	1 PUP:	FOUND DEAD. PARTIALLY CANNIBALIZED.
				AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		20	12 PUPS:	APPEARED NORMAL.
	8332	3	1 PIIP.	FOUND DEAD. PARTIALLY CANNIBALIZED.
	0002	J.	·	ALL OTHER TISSUES APPEARED NORMAL.
		20	10 PUPS:	APPEARED NORMAL.
	0000	0.0	10 prepa	ADDITION WORKER
	8333 8334			APPEARED NORMAL.
	8335	20		APPEARED NORMAL.
	8336			APPEARED NORMAL.
	8337			APPEARED NORMAL.
	8338	20		APPEARED NORMAL.
	8339	20	11 PUPS:	APPEARED NORMAL.
	8340	20	10 PUPS:	APPEARED NORMAL.
	8341	1.8	1 PIIP.	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
	0011	20		APPEARED NORMAL.
	8342	20	9 PIIPS.	APPEARED NORMAL.
	8343	20		APPEARED NORMAL.
	8344b	5	1 PIIP.	FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
	00112	15		FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		16		FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		20	8 PUPS:	APPEARED NORMAL.
	8346c	14	1 PUP:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		15		FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		16	4 PUPS:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		20	4 PUPS:	APPEARED NORMAL.

a. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation. Refer to the individual pup clinical observations table (Table 33) for external clinical observations confirmed at necropsy.

b. Mouse was found dead on day 14 of lactation; pups remained on study to day 20 postpartum. Any mortality of pups after day 14 postpartum were excluded from summarization and statistical analyses.

c. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum. Any mortality of pups after day 13 postpartum were excluded from summarization and statistical analyses.

TABLE 35 (PAGE 3): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		DAY POSTPARTUM	OBSERVATI	ONS a
II (CONT.)				
100	8347b	14	1 PUP:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		15	4 PUPS:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		16		FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		17		FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		20	2 PUPS:	APPEARED NORMAL.
	8348b	15	2 PUPS:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		16	4 PUPS:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		18	1 PUP:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		20	6 PUPS:	APPEARED NORMAL.
	8349	20	10 PUPS:	APPEARED NORMAL.
	8350	20	12 PUPS:	APPEARED NORMAL.
III				
350	8351	20	15 PUPS.	APPEARED NORMAL.
	8352	20	7 PUPS:	APPEARED NORMAL.
	8353	0	1 PIIP.	STILLBORN. ALL TISSUES APPEARED NORMAL.
	0000	5		FOUND DEAD. ALL TISSUES APPEARED NORMAL.
		20		APPEARED NORMAL.
	8354	0	2 DIIDG.	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
	0334	· ·		FOUND DEAD. PARTIALLY CANNIBALIZED. VIABILITY COULD NOT BE
				DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
			3 PUPS:	FOUND DEAD. PARTIALLY CANNIBALIZED. SEX AND VIABILITY COULD NOT BE
				DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
	8355	20	10 PUPS:	APPEARED NORMAL.
	8356	0	1 PUP:	FOUND DEAD. PARTIALLY CANNIBALIZED. SEX AND VIABILITY COULD NOT BE
				DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
		20	9 PUPS:	APPEARED NORMAL.

a. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation. Refer to the individual pup clinical observations table (Table 33) for external clinical observations confirmed at necropsy.

b. Mouse was found dead on day 13 of lactation; pups remained on study to day 20 postpartum. Any mortality of pups after day 13 postpartum were excluded from summarization and statistical analyses.

TABLE 35 (PAGE 4): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)	NUMBER			ONS a
III (CONT.) 350			1 PUP:	STILLBORN. ALL TISSUES APPEARED NORMAL. FOUND DEAD. PARTIALLY CANNIBALIZED. SEX COULD NOT BE DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
		20	4 PUPS:	APPEARED NORMAL.
	8358	0	1 PUP:	STILLBORN. PARTIALLY CANNIBALIZED. SEX COULD NOT BE DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
		1	9 PUPS:	FOUND DEAD. PARTIALLY CANNIBALIZED.
			1 PUP:	ALL OTHER TISSUES APPEARED NORMAL. FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
	8359	20	13 PUPS:	APPEARED NORMAL.
	8360	5	1 PUP:	STILLBORN. ALL TISSUES APPEARED NORMAL. FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION. APPEARED NORMAL.
	8362	0		FOUND DEAD. PARTIALLY CANNIBALIZED. VIABILITY COULD NOT BE DETERMINED. ALL OTHER TISSUES APPEARED NORMAL. APPEARED NORMAL.
	8363			APPEARED NORMAL.
	8364			FOUND DEAD. ALL TISSUES APPEARED NORMAL.
	0304	4	1 PUP:	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
		20	10 PUPS:	APPEARED NORMAL.
	8365 8366			APPEARED NORMAL. APPEARED NORMAL.
	8367	1 20		FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION. APPEARED NORMAL.
	8368 8369	20 20		APPEARED NORMAL. APPEARED NORMAL.
	8370	20	12 PUPS:	STILLBORN. ALL TISSUES APPEARED NORMAL. APPEARED NORMAL.

a. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation. Refer to the individual pup clinical observations table (Table 33) for external clinical observations confirmed at necropsy.

TABLE 35 (PAGE 5): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		DAY POSTPARTUM	OBSERVATI	CONS a
IV				
500	8371	1	1 PUP:	FOUND DEAD. HEART AND LUNGS APPEARED NORMAL. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		2	1 PUP:	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
		20	6 PUPS:	APPEARED NORMAL.
	8373	2	1 PUP:	FOUND DEAD. NO MILK IN STOMACH. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		20	7 PUPS:	APPEARED NORMAL.
	8374	20	6 PUPS:	APPEARED NORMAL.
	8375	0	3 PUPS:	STILLBORN. PARTIALLY CANNIBALIZED. ALL OTHER TISSUES APPEARED NORMAL FOR DEVELOPMENTAL AGE AND SLIGHT DEGREE OF AUTOLYSIS.
	8376	20	8 PUPS:	APPEARED NORMAL.
	8377	20	7 PUPS:	APPEARED NORMAL.
	8378	0	5 PUPS:	STILLBORN. ALL TISSUES APPEARED NORMAL.
				STILLBORN. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
			2 PUPS:	STILLBORN. PARTIALLY CANNIBALIZED.
			1 DIID.	ALL OTHER TISSUES APPEARED NORMAL. STILLBORN. PARTIALLY CANNIBALIZED. SEX COULD NOT BE DETERMINED.
			I FOF.	ALL OTHER TISSUES APPEARED NORMAL.
			1 PUP:	FOUND DEAD. PARTIALLY CANNIBALIZED.
				ALL OTHER TISSUES APPEARED NORMAL.
	8379	0	1 PUP:	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
		20	10 PUPS:	APPEARED NORMAL.
	8380	20		APPEARED NORMAL.

a. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation. Refer to the individual pup clinical observations table (Table 33) for external clinical observations confirmed at necropsy.

TABLE 35 (PAGE 6): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION PUPS

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)			OBSERVATI	ONS a
IV (CONT.)				
500	8381	0	1 PUP:	STILLBORN. ALL TISSUES APPEARED NORMAL.
				FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
		1	9 PUPS:	FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
	8382	20	8 PUPS:	APPEARED NORMAL.
	8383	0	2 PUPS:	STILLBORN. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
			3 PUPS:	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
			3 PUPS:	FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
	8385	0	1 PUP:	STILLBORN. ALL TISSUES APPEARED NORMAL.
			6 PUPS:	FOUND DEAD. PARTIALLY CANNIBALIZED. VIABILITY COULD NOT BE
				DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
				FOUND DEAD. NO MILK IN STOMACH. ALL OTHER TISSUES APPEARED NORMAL.
			1 PUP:	FOUND DEAD. SEX AND VIABILITY COULD NOT BE DETERMINED. FURTHER NECROPSY OBSERVATIONS WERE NOT RECORDED.
	9397	0	A DIIDG.	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
	0307	3		FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		20		APPEARED NORMAL.
	8388	0	1 PUP:	STILLBORN. ALL TISSUES APPEARED NORMAL.
			1 PUP:	FOUND DEAD. ALL TISSUES APPEARED NORMAL.
		3		FOUND DEAD. ALL TISSUES APPEARED NORMAL.
		4		FOUND DEAD. AUTOLYSIS PRECLUDED FURTHER EVALUATION.
		20	4 PUPS:	APPEARED NORMAL.
	8389	0	4 PUPS:	FOUND DEAD. PARTIALLY CANNIBALIZED. VIABILITY COULD NOT BE
				DETERMINED. ALL OTHER TISSUES APPEARED NORMAL.
	8390	0	2 PUPS:	STILLBORN. ALL TISSUES APPEARED NORMAL.
				APPEARED NORMAL.

a. Complete necropsies were not performed on pups in which autolysis or cannibalization precluded full evaluation. Refer to the individual pup clinical observations table (Table 33) for external clinical observations confirmed at necropsy.

TABLE 36 (PAGE 1): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP I	CONTROL	0 MG/KG/DAY
MOUSE #	DESCRIPTION	
9001	NO ADVERSE FINDINGS	
9002	NO ADVERSE FINDINGS	
9003	NO ADVERSE FINDINGS	
9004	NO ADVERSE FINDINGS	
9005	NO ADVERSE FINDINGS	
9006	NO ADVERSE FINDINGS	
9007	NO ADVERSE FINDINGS	
9008	NO ADVERSE FINDINGS	
9009	NO ADVERSE FINDINGS	
9010	NO ADVERSE FINDINGS	
9011	NO ADVERSE FINDINGS	
9012	NO ADVERSE FINDINGS	
9013	NO ADVERSE FINDINGS	
9014	NO ADVERSE FINDINGS	
9015	NO ADVERSE FINDINGS	
9016	NO ADVERSE FINDINGS	
9017	NO ADVERSE FINDINGS	
9018	NO ADVERSE FINDINGS	
9019	NO ADVERSE FINDINGS	
9020	NO ADVERSE FINDINGS	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE

TABLE 36 (PAGE 2): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP II	LOW DOSAGE	100 MG/KG/DAY
MOUSE #	DESCRIPTION	
9021	NO ADVERSE FINDINGS	
9022	NO ADVERSE FINDINGS	
9023	NO ADVERSE FINDINGS	
9024	NO ADVERSE FINDINGS	
9025	NO ADVERSE FINDINGS	
9026	NO ADVERSE FINDINGS	
9027	NO ADVERSE FINDINGS	
9028	NO ADVERSE FINDINGS	
9029	NO ADVERSE FINDINGS	
9030	NO ADVERSE FINDINGS	
9031	NO ADVERSE FINDINGS	
9032	NO ADVERSE FINDINGS	
9033	NO ADVERSE FINDINGS	
9034	NO ADVERSE FINDINGS	
9036	NO ADVERSE FINDINGS	
9037	NO ADVERSE FINDINGS	
9038	NO ADVERSE FINDINGS	
9039	NO ADVERSE FINDINGS	
9040	NO ADVERSE FINDINGS	
9102a	NO ADVERSE FINDINGS	

DP = DAY POSTPARTUM

a. Mouse 9102 was originally assigned to study as a female; however, at sexual maturation evaluation, mouse was discovered to be a male.

TABLE 36 (PAGE 3): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP III	MIDDLE DOSAGE	350 MG/KG/DAY
MOUSE #	DESCRIPTION	
9041 9042 9043 9044 9045 9046 9047 9048 9049 DP(23) 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060	NO ADVERSE FINDINGS FOUND DEAD NO ADVERSE FINDINGS	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE

TABLE 36 (PAGE 4): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL	DOSAGE GROUP IV	HIGH DOSAGE	500 MG/KG/DAY
MOUSE #		DESCRIPTION	
9061		NO ADVERSE FINDINGS	
9062		NO ADVERSE FINDINGS	
9063		NO ADVERSE FINDINGS	
9064	DP(28- 41)	TIP OF TAIL: CONSTRICTED a	
	DP(35- 37)	TIP OF TAIL: PURPLE	
	DP(38- 41)	TAIL BENT a	
	DP(38- 41)	TIP OF TAIL MISSING a	
9065		NO ADVERSE FINDINGS	
9066		NO ADVERSE FINDINGS	
9067		NO ADVERSE FINDINGS	
9068		NO ADVERSE FINDINGS	
9069		NO ADVERSE FINDINGS	
9070		NO ADVERSE FINDINGS	
9071		NO ADVERSE FINDINGS	
9072		NO ADVERSE FINDINGS	
9073		NO ADVERSE FINDINGS	
9074		NO ADVERSE FINDINGS	
9075		NO ADVERSE FINDINGS	
9076		NO ADVERSE FINDINGS	
9077		NO ADVERSE FINDINGS	
9078		NO ADVERSE FINDINGS	
9079		NO ADVERSE FINDINGS	
9080		NO ADVERSE FINDINGS	

DP = DAY POSTPARTUM

a. Observation confirmed at necropsy.

TABLE 37 (PAGE 1): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP I	CONTROL	0 MG/KG/DAY
MOUSE #	DESCRIPTION	
9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 DP(21-41) 9095 9096 9097 9098 9099	NO ADVERSE FINDINGS TAIL BENT a NO ADVERSE FINDINGS	

DP = DAY POSTPARTUM

a. Observation confirmed at necropsy.

TABLE 37 (PAGE 2): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP II	LOW DOSAGE	100 MG/KG/DAY
MOUSE #	DESCRIPTION	
9035a	NO ADVERSE FINDINGS	
9101	NO ADVERSE FINDINGS	
9103	NO ADVERSE FINDINGS	
9104	NO ADVERSE FINDINGS	
9105	NO ADVERSE FINDINGS	
9106	NO ADVERSE FINDINGS	
9107	NO ADVERSE FINDINGS	
9108	NO ADVERSE FINDINGS	
9109	NO ADVERSE FINDINGS	
9110	NO ADVERSE FINDINGS	
9111	NO ADVERSE FINDINGS	
9112	NO ADVERSE FINDINGS	
9113	NO ADVERSE FINDINGS	
9114	NO ADVERSE FINDINGS	
9115	NO ADVERSE FINDINGS	
9116	NO ADVERSE FINDINGS	
9117	NO ADVERSE FINDINGS	
9118	NO ADVERSE FINDINGS	
9119	NO ADVERSE FINDINGS	
9120	NO ADVERSE FINDINGS	

DP = DAY POSTPARTUM

a. Mouse 9035 was originally assigned to study as a male; however, at sexual maturation evaluation, mouse was discovered to be a female.

TABLE 37 (PAGE 3): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP III		350 MG/KG/DAY
MOUSE #	DESCRIPTION	
9121	NO ADVERSE FINDINGS	
9122	NO ADVERSE FINDINGS	
9123	NO ADVERSE FINDINGS	
9124	NO ADVERSE FINDINGS	
9125	NO ADVERSE FINDINGS	
9126	NO ADVERSE FINDINGS	
9127	NO ADVERSE FINDINGS	
9128	NO ADVERSE FINDINGS	
9129	NO ADVERSE FINDINGS	
9130	NO ADVERSE FINDINGS	
9131	NO ADVERSE FINDINGS	
9132	NO ADVERSE FINDINGS	
9133	NO ADVERSE FINDINGS	
9134	NO ADVERSE FINDINGS	
9135	NO ADVERSE FINDINGS	
9136	NO ADVERSE FINDINGS	
9137	NO ADVERSE FINDINGS	
9138	NO ADVERSE FINDINGS	
9139	NO ADVERSE FINDINGS	
9140	NO ADVERSE FINDINGS	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE

TABLE 37 (PAGE 4): CLINICAL OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP IV	HIGH DOSAGE	500 MG/KG/DAY
MOUSE #	DESCRIPTION	
9141	NO ADVERSE FINDINGS	
9142	NO ADVERSE FINDINGS	
9143	NO ADVERSE FINDINGS	
9144	NO ADVERSE FINDINGS	
9145	NO ADVERSE FINDINGS	
9146	NO ADVERSE FINDINGS	
9147	NO ADVERSE FINDINGS	
9148	NO ADVERSE FINDINGS	
9149	NO ADVERSE FINDINGS	
9150	NO ADVERSE FINDINGS	
9151	NO ADVERSE FINDINGS	
9152	NO ADVERSE FINDINGS	
9153	NO ADVERSE FINDINGS	
9154	NO ADVERSE FINDINGS	
9155	NO ADVERSE FINDINGS	
9156	NO ADVERSE FINDINGS	
9157	NO ADVERSE FINDINGS	
9158	NO ADVERSE FINDINGS	
9159	NO ADVERSE FINDINGS	
9160	NO ADVERSE FINDINGS	

CLINICAL OBSERVATIONS APPEARED NORMAL UNLESS NOTED OTHERWISE

TABLE 38 (PAGE 1): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

	DAY 21	28	35	41		
MOUSE #	MATERN	AL DOSAGE			CONTROL	0 MG/KG/DAY
9001	9.5	18.3	25.1	26.4		
9002	8.4	17.0	26.4	30.5		
9003	10.9	20.1	25.5	27.3		
9004	12.9	23.4	29.5	33.1		
9005	10.8	22.5	29.0	32.7		
9006	10.9	20.0	27.0	31.1		
9007	12.0	22.7	28.0	30.6		
9008	17.4	29.8	34.1	38.0		
9009	11.6	23.1	29.0	30.5		
9010	18.6	29.8	36.1	38.7		
9011	11.6	23.1	30.2	31.3		
9012	11.4	22.3	28.7	29.7		
9013	14.4	27.0	31.5	34.6		
9014	13.4	25.2	29.4	32.5		
9015	15.2	19.7	27.4	32.0		
9016	15.7	25.1	27.4	32.0		
9017	12.9	24.7	31.5	35.1		
9018	9.5	20.0	28.2	32.5		
9019	10.0	20.2	27.4	33.9		
9020	12.5	22.7	27.8	29.4		

DAY = DAY POSTPARTUM

TABLE 38 (PAGE 2): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

	DAY 21	28	35	41		
MOUSE #			GROUP II		LOW DOSAGE	100 MG/KG/DAY
	11.0	20.8	28.3	29.6		
9022	11.3	21.2	28.7	30.8		
9023	10.9	20.8	27.8	30.9		
9024	9.2	17.2	23.9	26.3		
9025	13.0	24.1	32.5	35.8		
9026	14.1	25.3	29.3	32.5		
9027	13.2	26.2	31.5	34.2		
9028	13.8	25.3	31.4	34.9		
9029	11.9	23.7	29.9	33.1		
9030	11.7	23.1	30.8	34.0		
9031	10.9	20.8	28.2	31.1		
9032	11.6	22.7	29.8	33.7		
9033	9.0	17.9	25.6	30.5		
9034	7.1	15.0	23.7	26.8		
9036	6.3	15.1	24.0	28.6		
9037	7.7	17.0	24.5	30.7		
9038	10.1	19.7	27.4	32.2		
9039	10.8	20.4	28.4	31.3		
9040	8.3	17.2	24.3	28.3		
9102a	10.3	19.6	27.6	30.1		

DAY = DAY POSTPARTUM

a. Mouse 9102 was originally assigned to study as a female; however, at sexual maturation evaluation, mouse was discovered to be a male.

TABLE 38 (PAGE 3): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

	DAY 21	28	35	41			
	MATERNA				MIDDLE DOSAGE	350 MG/KG/DAY	
	10.4		28.3	30.0			
9042	7.1	14.5	23.8	26.5			
9043	11.0	20.4	28.3	31.8			
9044	10.3	20.8	27.9	30.2			
9045	8.2	17.9	27.5	30.6			
9046	9.7	19.8	27.0	29.6			
9047	12.0	22.9	30.1	32.1			
9048	9.0	17.4	26.2	29.8			
9049	6.4	FOUND 1	DEAD ON DA	AY 23 POSTPARTUM			
9050	6.7	14.5	22.7	27.4			
9051	8.8	18.0	26.4	29.9			
9052	9.1	20.0	29.5	32.6			
9053	15.5	27.9	33.2	36.7			
9054	16.2	27.2	30.6	33.7			
9055	10.1	19.4	25.1	27.5			
9056	8.1	18.6	27.9	31.6			
9057	10.1	20.5	28.4	32.4			
9058	16.0	27.1	31.7	34.4			
9059	11.8	23.7	30.6	31.8			
9060	9.1	19.3	26.9	30.6			

DAY = DAY POSTPARTUM

TABLE 38 (PAGE 4): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

	DAY 21	28	35	41		
MOUSE #			GROUP IV		HIGH DOSAGE	500 MG/KG/DAY
	10.5	21.1	27.4	28.6		
9062	11.5	21.9	29.7	30.8		
9063	8.1	17.3	25.3	27.8		
9064	8.7	17.4	24.9	28.1		
9065	12.5	23.1	28.8	32.3		
9066	12.4	22.4	28.0	30.7		
9067	12.6	24.4	29.0	31.6		
9068	12.3	22.1	27.2	29.5		
9069	11.3	21.5	27.7	30.2		
9070	10.8	20.6	28.2	30.3		
9071	10.9	21.9	28.6	30.7		
9072	7.7	17.1	26.5	29.9		
9073	6.4	15.0	23.4	28.7		
9074	9.5	18.3	25.3	30.7		
9075	9.3	18.6	26.9	31.3		
9076	8.8	16.9	24.2	29.0		
9077	9.9	20.1	28.3	32.1		
9078	16.4	29.9	34.4	38.2		
9079	15.5	28.0	33.0	37.6		
9080	11.0	20.2	25.9	30.1		

DAY = DAY POSTPARTUM

TABLE 39 (PAGE 1): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

	DAY 21	28	35	41		
MOUSE #	MATERN	AL DOSAGE			CONTROL	0 MG/KG/DAY
	10.1	17.5	23.4	23.0		
9082	11.5	15.1	23.0	25.4		
9083	9.2	18.3	22.0	23.3		
9084	12.7	22.7	25.2	27.4		
9085	10.9	17.6	23.9	25.5		
9086	11.4	19.1	23.8	25.2		
9087	12.1	20.6	25.7	26.5		
9088	16.9	24.1	27.9	29.1		
9089	10.3	17.7	22.5	23.4		
9090	16.5	22.9	27.3	29.6		
9091	11.6	19.9	26.5	26.6		
9092	12.5	20.2	24.4	24.7		
9093	12.6	21.3	25.0	26.2		
9094	9.8	17.6	22.0	24.0		
9095	10.4	18.3	23.7	26.7		
9096	16.8	22.5	26.3	28.4		
9097	10.1	17.7	23.2	23.0		
9098	8.7	17.6	22.8	23.9		
9099	9.7	18.0	22.3	24.7		
9100	11.4	21.2	23.7	25.5		

DAY = DAY POSTPARTUM

TABLE 39 (PAGE 2): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

	DAY 21	28	35	41		
MOUSE #			GROUP II		LOW DOSAGE	100 MG/KG/DAY
9035a	8.2	15.9	21.3	23.1		
9101	11.6	19.7	24.3	25.1		
9103	11.6	18.2	21.8	24.0		
9104	10.6	18.7	22.6	24.1		
9105	11.5	19.9	26.1	27.7		
9106	12.3	20.4	24.9	26.8		
9107	13.2	22.0	28.2	27.8		
9108	12.5	19.8	24.3	24.2		
9109	10.9	18.5	23.5	24.6		
9110	12.7	20.8	25.8	26.7		
9111	9.1	15.0	20.4	22.3		
9112	11.7	19.1	25.4	26.2		
9113	10.1	19.2	25.6	25.9		
9114	9.9	17.1	21.9	22.7		
9115	8.2	16.3	23.1	25.6		
9116	7.2	15.1	24.3	25.2		
9117	4.9	12.2	17.6	20.8		
9118	7.1	14.7	20.4	22.9		
9119	10.1	17.3	22.8	25.5		
9120	8.2	14.1	20.0	22.9		

DAY = DAY POSTPARTUM

a. Mouse 9035 was originally assigned to study as a male; however, at sexual maturation evaluation, mouse was discovered to be a female.

TABLE 39 (PAGE 3): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

	DAY 21	28	35	41	 -
	MATERNA				_
9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137					-
	10.8 9.2	18.3 15.9	23.7 21.8	24.2 24.6	

DAY = DAY POSTPARTUM

TABLE 39 (PAGE 4): BODY WEIGHTS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

	DAY 21	28	35	41		
MOUSE #	MATERN		GROUP IV		HIGH DOSAGE	500 MG/KG/DAY
	10.4		21.4	22.7		
9142	10.6	16.5	22.9	24.2		
9143	9.5	17.3	22.6	25.2		
9144	8.8	15.8	21.0	23.8		
9145	12.1	20.6	23.7	25.0		
9146	12.3	21.4	25.3	27.6		
9147	12.1	19.7	24.0	25.6		
9148	10.9	16.9	22.4	25.2		
9149	9.6	16.1	20.5	23.1		
9150	10.0	17.8	22.5	25.2		
9151	10.0	17.8	22.9	25.1		
9152	9.5	16.4	21.8	24.4		
9153	8.5	15.3	21.5	24.4		
9154	9.7	17.5	21.5	23.8		
9155	9.3	16.4	20.9	23.5		
9156	9.7	17.0	22.0	22.7		
9157	15.2	24.3	25.9	28.1		
9158	14.3	21.8	23.6	26.8		
9159	12.1	18.6	21.9	24.5		
9160	11.4	17.8	20.3	21.0		

DAY = DAY POSTPARTUM

TABLE 40 (PAGE 1): SEXUAL MATURATION - INDIVIDUAL DATA - F1 GENERATION MALE MICE

				MATERNAL D	OSAGE GRO	UP - MG/KG/	DAY					
	I 0			II 100			III 350			IV 500		
MOUSE #	PREPUTIAL SEPARATION (DAY)	BODY WEIGHT (G)a	MOUSE #	PREPUTIAL SEPARATION (DAY)	BODY WEIGHT (G)a	MOUSE #	PREPUTIAL SEPARATION (DAY)	BODY WEIGHT (G)a	MOUSE #	PREPUTIAL SEPARATION (DAY)	BODY WEIGHT (G)a	
9001	29	20.9	9021	29	23.3	9041	29	22.0	9061	29	22.5	
9002	33	24.2	9022	29	22.5	9042	31	19.5	9062	29	23.3	
9003	27	19.2	9023	28	20.8	9043	29	21.9	9063	29	18.7	
9004	30	25.7	9024	31	21.4	9044	29	22.3	9064	29	19.0	
9005	30	24.2	9025	29	25.6	9045	31	23.0	9065	27	21.6	
9006	27	18.8	9026	28	25.3	9046	29	21.5	9066	27	20.9	
9007	29	24.0	9027	28	26.2	9047	27	21.0	9067	29	25.6	
9008	28	29.8	9028	28	25.3	9048	30	20.2	9068	29	22.8	
9009	28	23.1	9029	29	24.9	9049b			9069	28	21.5	
9010	28	29.8	9030	29	24.6	9050	37	24.3	9070	29	22.1	
9011	30	25.5	9031	29	21.9	9051	30	21.2	9071	28	21.9	
9012	31	25.6	9032	29	23.9	9052	30	23.2	9072	31	22.6	
9013	27	25.7	9033	32	23.8	9053	27	25.4	9073	32	20.0	
9014	28	25.2	9034	32	20.9	9054	27	25.7	9074	31	22.5	
9015	32	24.6	9036	36	25.4	9055	29	20.8	9075	32	24.9	
9016	С	23.4	9037	33	22.7	9056	29	20.3	9076	33	22.8	
9017	30	27.2	9038	32	25.5	9057	27	19.3	9077	31	24.6	
9018	29	21.5	9039	28	20.4	9058	27	25.9	9078	29	30.6	
9019	33	25.8	9040	30	20.4	9059	30	26.9	9079	27	26.2	
9020	С	19.7	9102d	28	19.6	9060	29	21.3	9080	29	21.8	

a. Body weight on day prepuce was first observed to be separated.

b. Mouse 9049 was found dead on day 23 postpartum.

c. The prepuce was separated on the first day of observation, day 26 postpartum, therefore the exact day of maturity could not be determined; body weight on this day was excluded from summarization and statistical analyses.

d. Mouse 9102 was originally assigned to study as a female; however, at sexual maturation evaluation, mouse was discovered to be a male.

TABLE 41 (PAGE 1): SEXUAL MATURATION - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

				MATERNAL 1	DOSAGE GRO	UP - MG/KG/I	DAY					
	I 0			II 100			III 350			IV 500		
MOUSE #	VAGINAL PATENCY (DAY)	BODY WEIGHT (G)a	MOUSE #	VAGINAL PATENCY (DAY)	BODY WEIGHT (G)a	MOUSE #	VAGINAL PATENCY (DAY)	BODY WEIGHT (G)a	MOUSE #	VAGINAL PATENCY (DAY)	BODY WEIGHT (G) a	
9081	27	16.6	9035b	С	15.6	9121	31	19.1	9141	30	19.1	
9082	28	15.1	9101	28	19.7	9122	28	16.3	9142	32	20.4	
9083	28	18.3	9103	27	17.2	9123	32	17.4	9143	26	15.2	
9084	26	19.5	9104	27	18.0	9124	29	17.1	9144	30	18.0	
9085	29	18.9	9105	27	18.5	9125	27	15.8	9145	27	19.2	
9086	27	18.4	9106	27	19.7	9126	29	16.4	9146	29	21.9	
9087	27	19.9	9107	27	21.9	9127	27	14.3	9147	26	17.8	
9088	d	16.3	9108	27	19.1	9128	25	16.7	9148	29	17.8	
9089	29	18.7	9109	29	19.8	9129	29	19.4	9149	29	17.1	
9090	21	16.1	9110	28	20.8	9130	е		9150	30	20.3	
9091	27	19.1	9111	29	15.9	9131	27	15.8	9151	29	18.8	
9092	27	19.8	9112	27	18.0	9132	27	13.7	9152	26	15.6	
9093	26	19.1	9113	27	17.6	9133	25	15.4	9153	28	15.3	
9094	28	17.6	9114	26	15.3	9134	d	12.2	9154	27	17.0	
9095	28	18.3	9115	27	15.2	9135	27	15.8	9155	25	13.9	
9096	24	19.6	9116	29	16.6	9136	26	17.3	9156	26	14.6	
9097	28	17.7	9117	26	9.5	9137	29	16.8	9157	25	20.0	
9098	28	17.6	9118	27	13.6	9138	28	18.1	9158	25	18.0	
9099	28	18.0	9119	28	17.3	9139	25	15.4	9159	25	16.0	
9100	24	15.3	9120	30	16.5	9140	25	12.8	9160	26	15.4	

- a. Body weight on day vagina was first observed to be patent.
- b. Mouse 9035 was originally assigned to study as a male; however, at sexual maturation evaluation, mouse was discovered to be a female.
- c. Mouse 9035 was observed to have reached sexual maturity on day 27 postpartum. However, the exact day of maturity could not be determined because this mouse was not observed for vaginal patency on the previous day; body weight on day 27 postpartum was excluded from summarization and statistical analyses.
- d. The vagina was patent on the first day of observation, day 20 postpartum, therefore the exact day of maturity could not be determined; body weight on this day was excluded from summarization and statistical analyses.
- e. Mouse 9130 had not reached sexual maturity by day 41 postpartum, the day of scheduled sacrifice.

TABLE 42 (PAGE 1): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

	OOSAGE GROUP OOSAGE (MG/KG/DAY)	MOUSE NUMBER	DAY OF NECROPSY	OBSERVATIONS a
]				
()	9001	DP 41	ALL TISSUES APPEARED NORMAL.
		9002	DP 41	ALL TISSUES APPEARED NORMAL.
		9003	DP 41	ALL TISSUES APPEARED NORMAL.
		9004	DP 41	ALL TISSUES APPEARED NORMAL.
		9005	DP 41	ALL TISSUES APPEARED NORMAL.
		9006	DP 41	ALL TISSUES APPEARED NORMAL.
		9007	DP 41	ALL TISSUES APPEARED NORMAL.
		9008	DP 41	ALL TISSUES APPEARED NORMAL.
		9009	DP 41	ALL TISSUES APPEARED NORMAL.
		9010	DP 41	ALL TISSUES APPEARED NORMAL.
		9011	DP 41	ALL TISSUES APPEARED NORMAL.
		9012	DP 41	ALL TISSUES APPEARED NORMAL.
		9013	DP 41	ALL TISSUES APPEARED NORMAL.
		9014	DP 41	ALL TISSUES APPEARED NORMAL.
		9015	DP 41	ALL TISSUES APPEARED NORMAL.
		9016	DP 41	ALL TISSUES APPEARED NORMAL.
		9017	DP 41	ALL TISSUES APPEARED NORMAL.
		9018	DP 41	ALL TISSUES APPEARED NORMAL.
		9019	DP 41	ALL TISSUES APPEARED NORMAL.
		9020	DP 41	ALL TISSUES APPEARED NORMAL.

a. Refer to the individual clinical observations table (Table 36) for external observations confirmed at necropsy.

TABLE 42 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)	MOUSE NUMBER	DAY OF NECROPSY	OBSERVATIONS a
II			
100	9021	DP 41	ALL TISSUES APPEARED NORMAL.
	9022	DP 41	ALL TISSUES APPEARED NORMAL.
	9023	DP 41	ALL TISSUES APPEARED NORMAL.
	9024	DP 41	ALL TISSUES APPEARED NORMAL.
	9025	DP 41	ALL TISSUES APPEARED NORMAL.
	9026	DP 41	ALL TISSUES APPEARED NORMAL.
	9027	DP 41	ALL TISSUES APPEARED NORMAL.
	9028	DP 41	ALL TISSUES APPEARED NORMAL.
	9029	DP 41	ALL TISSUES APPEARED NORMAL.
	9030	DP 41	ALL TISSUES APPEARED NORMAL.
	9031	DP 41	ALL TISSUES APPEARED NORMAL.
	9032	DP 41	ALL TISSUES APPEARED NORMAL.
	9033	DP 41	ALL TISSUES APPEARED NORMAL.
	9034	DP 41	ALL TISSUES APPEARED NORMAL.
	9036	DP 41	ALL TISSUES APPEARED NORMAL.
	9037	DP 41	ALL TISSUES APPEARED NORMAL.
	9038	DP 41	ALL TISSUES APPEARED NORMAL.
	9039	DP 41	ALL TISSUES APPEARED NORMAL.
	9040	DP 41	ALL TISSUES APPEARED NORMAL.
	9102b	DP 41	ALL TISSUES APPEARED NORMAL.

a. Refer to the individual clinical observations table (Table 36) for external observations confirmed at necropsy.

b. Mouse 9102 was originally assigned to study as a female; however, at sexual maturation evaluation, mouse was discovered to be a male.

TABLE 42 (PAGE 3): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		NECROPSY	OBSERVATIONS a
III			
350	9041	DP 41	ALL TISSUES APPEARED NORMAL.
	9042	DP 41	ALL TISSUES APPEARED NORMAL.
	9043	DP 41	ALL TISSUES APPEARED NORMAL.
	9044	DP 41	ALL TISSUES APPEARED NORMAL.
	9045	DP 41	ALL TISSUES APPEARED NORMAL.
	9046	DP 41	ALL TISSUES APPEARED NORMAL.
	9047	DP 41	ALL TISSUES APPEARED NORMAL.
	9048	DP 41	ALL TISSUES APPEARED NORMAL.
	9049	DP 23	FOUND DEAD ON DAY 23 POSTPARTUM.
			ALL TISSUES APPEARED NORMAL FOR MODERATE DEGREE OF AUTOLYSIS.
	9050	DP 41	ALL TISSUES APPEARED NORMAL.
	9051	DP 41	ALL TISSUES APPEARED NORMAL.
	9052	DP 41	ALL TISSUES APPEARED NORMAL.
	9053	DP 41	ALL TISSUES APPEARED NORMAL.
	9054	DP 41	ALL TISSUES APPEARED NORMAL.
	9055	DP 41	ALL TISSUES APPEARED NORMAL.
	9056	DP 41	ALL TISSUES APPEARED NORMAL.
	9057	DP 41	ALL TISSUES APPEARED NORMAL.
	9058	DP 41	ALL TISSUES APPEARED NORMAL.
	9059	DP 41	ALL TISSUES APPEARED NORMAL.
	9060	DP 41	ALL TISSUES APPEARED NORMAL.

DP = DAY POSTPARTUM

a. Refer to the individual clinical observations table (Table 36) for external observations confirmed at necropsy.

TABLE 42 (PAGE 4): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		DAY OF NECROPSY	OBSERVATIONS a
IV			
500	9061	DP 41	ALL TISSUES APPEARED NORMAL.
	9062	DP 41	ALL TISSUES APPEARED NORMAL.
	9063	DP 41	ALL TISSUES APPEARED NORMAL.
	9064	DP 41	ALL TISSUES APPEARED NORMAL.
	9065	DP 41	ALL TISSUES APPEARED NORMAL.
	9066	DP 41	ALL TISSUES APPEARED NORMAL.
	9067	DP 41	ALL TISSUES APPEARED NORMAL.
	9068	DP 41	ALL TISSUES APPEARED NORMAL.
	9069	DP 41	ALL TISSUES APPEARED NORMAL.
	9070	DP 41	ALL TISSUES APPEARED NORMAL.
	9071	DP 41	ALL TISSUES APPEARED NORMAL.
	9072	DP 41	ALL TISSUES APPEARED NORMAL.
	9073	DP 41	ALL TISSUES APPEARED NORMAL.
	9074	DP 41	ALL TISSUES APPEARED NORMAL.
	9075	DP 41	ALL TISSUES APPEARED NORMAL.
	9076	DP 41	ALL TISSUES APPEARED NORMAL.
	9077	DP 41	ALL TISSUES APPEARED NORMAL.
	9078	DP 41	ALL TISSUES APPEARED NORMAL.
	9079	DP 41	ALL TISSUES APPEARED NORMAL.
	9080	DP 41	ALL TISSUES APPEARED NORMAL.

a. Refer to the individual clinical observations table (Table 36) for external observations confirmed at necropsy.

TABLE 43 (PAGE 1): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)		DAY OF NECROPSY	OBSERVATIONS a
I			
0	9081	DP 41	ALL TISSUES APPEARED NORMAL.
	9082	DP 41	ALL TISSUES APPEARED NORMAL.
	9083	DP 41	ALL TISSUES APPEARED NORMAL.
	9084	DP 41	ALL TISSUES APPEARED NORMAL.
	9085	DP 41	ALL TISSUES APPEARED NORMAL.
	9086	DP 41	ALL TISSUES APPEARED NORMAL.
	9087	DP 41	ALL TISSUES APPEARED NORMAL.
	9088	DP 41	ALL TISSUES APPEARED NORMAL.
	9089	DP 41	ALL TISSUES APPEARED NORMAL.
	9090	DP 41	ALL TISSUES APPEARED NORMAL.
	9091	DP 41	ALL TISSUES APPEARED NORMAL.
	9092	DP 41	ALL TISSUES APPEARED NORMAL.
	9093	DP 41	ALL TISSUES APPEARED NORMAL.
	9094	DP 41	ALL TISSUES APPEARED NORMAL.
	9095	DP 41	ALL TISSUES APPEARED NORMAL.
	9096	DP 41	ALL TISSUES APPEARED NORMAL.
	9097	DP 41	ALL TISSUES APPEARED NORMAL.
	9098	DP 41	ALL TISSUES APPEARED NORMAL.
	9099	DP 41	ALL TISSUES APPEARED NORMAL.
	9100	DP 41	ALL TISSUES APPEARED NORMAL.

a. Refer to the individual clinical observations table (Table 37) for external observations confirmed at necropsy.

TABLE 43 (PAGE 2): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP MATERNAL DOSAGE (MG/KG/DAY)	NUMBER	NECROPSY	
II			
100	9035b	DP 41	ALL TISSUES APPEARED NORMAL.
	9101	DP 41	ALL TISSUES APPEARED NORMAL.
	9103	DP 41	ALL TISSUES APPEARED NORMAL.
	9104	DP 41	ALL TISSUES APPEARED NORMAL.
	9105	DP 41	ALL TISSUES APPEARED NORMAL.
	9106	DP 41	ALL TISSUES APPEARED NORMAL.
	9107	DP 41	KIDNEYS: LEFT, SMALL (0.098 G). ALL OTHER TISSUES APPEARED NORMAL.
	9108	DP 41	ALL TISSUES APPEARED NORMAL.
	9109	DP 41	ALL TISSUES APPEARED NORMAL.
	9110	DP 41	ALL TISSUES APPEARED NORMAL.
	9111	DP 41	ALL TISSUES APPEARED NORMAL.
	9112	DP 41	ALL TISSUES APPEARED NORMAL.
	9113	DP 41	ALL TISSUES APPEARED NORMAL.
	9114	DP 41	ALL TISSUES APPEARED NORMAL.
	9115	DP 41	ALL TISSUES APPEARED NORMAL.
	9116	DP 41	ALL TISSUES APPEARED NORMAL.
	9117	DP 41	ALL TISSUES APPEARED NORMAL.
	9118	DP 41	ALL TISSUES APPEARED NORMAL.
	9119	DP 41	ALL TISSUES APPEARED NORMAL.
	9120	DP 41	ALL TISSUES APPEARED NORMAL.

DP = DAY POSTPARTUN

a. Refer to the individual clinical observations table (Table 37) for external observations confirmed at necropsy.

b. Mouse 9035 was originally assigned to study as a male; however, at sexual maturation evaluation, mouse was discovered to be a female.

TABLE 43 (PAGE 3): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP	MOUSE	DAY OF	
MATERNAL DOSAGE (MG/KG/DAY)	NUMBER	NECROPSY	OBSERVATIONS a
III			
350	9121	DP 41	ALL TISSUES APPEARED NORMAL.
	9122	DP 41	ALL TISSUES APPEARED NORMAL.
	9123	DP 41	ALL TISSUES APPEARED NORMAL.
	9124	DP 41	ALL TISSUES APPEARED NORMAL.
	9125	DP 41	ALL TISSUES APPEARED NORMAL.
	9126	DP 41	ALL TISSUES APPEARED NORMAL.
	9127	DP 41	ALL TISSUES APPEARED NORMAL.
	9128	DP 41	ALL TISSUES APPEARED NORMAL.
	9129	DP 41	ALL TISSUES APPEARED NORMAL.
	9130	DP 41	ALL TISSUES APPEARED NORMAL.
	9131	DP 41	ALL TISSUES APPEARED NORMAL.
	9132	DP 41	ALL TISSUES APPEARED NORMAL.
	9133	DP 41	ALL TISSUES APPEARED NORMAL.
	9134	DP 41	ALL TISSUES APPEARED NORMAL.
	9135	DP 41	ALL TISSUES APPEARED NORMAL.
	9136	DP 41	ALL TISSUES APPEARED NORMAL.
	9137	DP 41	ALL TISSUES APPEARED NORMAL.
	9138	DP 41	ALL TISSUES APPEARED NORMAL.
	9139	DP 41	ALL TISSUES APPEARED NORMAL.
	9140	DP 41	ALL TISSUES APPEARED NORMAL.

a. Refer to the individual clinical observations table (Table 37) for external observations confirmed at necropsy.

TABLE 43 (PAGE 4): NECROPSY OBSERVATIONS - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

MATERNAL DOSAGE GROUP	MOUSE	DAY OF	
MATERNAL DOSAGE (MG/KG/DAY)	NUMBER	NECROPSY	OBSERVATIONS a
IV			
500	9141	DP 41	ALL TISSUES APPEARED NORMAL.
	9142	DP 41	ALL TISSUES APPEARED NORMAL.
	9143	DP 41	ALL TISSUES APPEARED NORMAL.
	9144	DP 41	ALL TISSUES APPEARED NORMAL.
	9145	DP 41	ALL TISSUES APPEARED NORMAL.
	9146	DP 41	ALL TISSUES APPEARED NORMAL.
	9147	DP 41	ALL TISSUES APPEARED NORMAL.
	9148	DP 41	ALL TISSUES APPEARED NORMAL.
	9149	DP 41	ALL TISSUES APPEARED NORMAL.
	9150	DP 41	ALL TISSUES APPEARED NORMAL.
	9151	DP 41	ALL TISSUES APPEARED NORMAL.
	9152	DP 41	ALL TISSUES APPEARED NORMAL.
	9153	DP 41	ALL TISSUES APPEARED NORMAL.
	9154	DP 41	ALL TISSUES APPEARED NORMAL.
	9155	DP 41	ALL TISSUES APPEARED NORMAL.
	9156	DP 41	ALL TISSUES APPEARED NORMAL.
	9157	DP 41	ALL TISSUES APPEARED NORMAL.
	9158	DP 41	ALL TISSUES APPEARED NORMAL.
	9159	DP 41	ALL TISSUES APPEARED NORMAL.
	9160	DP 41	ALL TISSUES APPEARED NORMAL.

a. Refer to the individual clinical observations table (Table 37) for external observations confirmed at necropsy.

TABLE 44 (PAGE 1): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - INDIVIDUAL DATA - F1 GENERATION MALE MICE

MOUSE !		LIVE ABS. WT.	REL.		
				CONTROL	0 MG/KG/DAY
9002 9003 9004 9005 9006	30.5 27.3 33.1 32.7	2.243 1.908 2.215 2.159 2.027	7.35 6.99 6.69 6.60 6.52		
	L DOSAGE GROUP	II		LOW DOSAGE	100 MG/KG/DAY
9022 9023 9024 9025 9026	30.8 30.9 26.3 35.8	2.008 2.070 1.780 2.389 2.357	6.52 6.70 6.77 6.67 7.25		
MATERNA	MATERNAL DOSAGE GROUP III			MIDDLE DOSAGE	350 MG/KG/DAY
9043 9044 9045 9046 9047 9049a	30.2 30.6 29.6 32.1	2.195 2.172 2.210 2.093 2.432 0.244	6.90 7.19 7.22 7.07 7.58		
MATERNAL DOSAGE GROUP IV				HIGH DOSAGE	500 MG/KG/DAY
9063 9064 9065 9066 9067	27.8 28.1 32.3 30.7	1.749 1.844 2.002 1.902 2.153	6.29 6.56 6.20 6.20 6.81		

ALL WEIGHTS WERE RECORDED IN GRAMS (G). ABS. WT. = ORGAN WEIGHT. REL. % TBW = (ORGAN WEIGHT/TERMINAL BODY WEIGHT) X 100. a. Mouse 9049 was found dead on day 23 postpartum; values were excluded from summarization and statistical analyses.

TABLE 45 (PAGE 1): TERMINAL BODY WEIGHTS, LIVER WEIGHTS AND RATIOS (%) OF LIVER WEIGHT TO TERMINAL BODY WEIGHT - INDIVIDUAL DATA - F1 GENERATION FEMALE MICE

NUMBER		ABS. WT.	REL. % TBW		
MATERNAI	DOSAGE GROUP	I		CONTROL	0 MG/KG/DAY
9082		1.637			
		1.411	6.06		
9084		1.652	6.03		
		1.488			
9086	25.2	1.490	5.91		
	DOSAGE GROUP			LOW DOSAGE	100 MG/KG/DAY
9103	24.0	1.382			
9104		1.357			
9105	27.7	1.723	6.22		
9106	26.8	1.633	6.09		
9107	27.8	1.650	5.94		
MATERNAL DOSAGE GROUP III				MIDDLE DOSAGE	350 MG/KG/DAY
		1.222			
9125	22.8	1.489	6.53		
9126	21.5	1.399	6.51		
9127	22.5	1.471	6.54		
9128	24.8	1.706	6.88		
MATERNAI	DOSAGE GROUP	IV		HIGH DOSAGE	500 MG/KG/DAY
	25.2				
		1.575			
		1.651	6.60		
9146		1.644	5.96		
	25.6	1 407	5.85		

APPENDIX 1 – PROTOCOL AND AMENDMENTS

FINAL PROTOCOL

Charles River Laboratories Study No. 20005045

Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) in Mice

SPONSOR:

Daikin Industries, LTD
Chemical Division
Umeda Center Building
4-12 Nakazaki-Nishi, 2-chrome
Kita-ku, Osaka 530-8323
JAPAN

PERFORMING LABORATORY:

Charles River Laboratories
Preclinical Services
905 Sheehy Drive, Building A
Horsham, PA 19044
USA

21 September 2010

Page 1 of 46

Page 2 of 46 Testing Facility Study No. 20005045

TABLE OF CONTENTS

1.	STUDY NUMBER	4
2.	STUDY TITLE	4
3.	PURPOSE	4
4.	TESTING FACILITY	4
5.	STUDY DIRECTOR	4
6.	SPONSOR	5
7.	STUDY MONITOR	5
8.	PRINCIPAL INVESTIGATOR - DOSE FORMULATION ANALYSIS	5
9.	PRINCIPAL INVESTIGATOR - BIOANALYSIS	6
10.	REGULATORY COMPLIANCE	6
11.	SCHEMATIC OF STUDY DESIGN AND PROPOSED SCHEDULE ¹	7
12.	TEST SUBSTANCE AND VEHICLE	8
13.	FORMULATION	9
14.	ANALYSES	9
15.	DISPOSITION	. 11
16.	TEST SYSTEM	12
17.	ANIMAL HUSBANDRY	13
18.	DAY NUMBERING SYSTEM	15
19.	RANDOMIZATION AND COHABITATION	15
20.	ADMINISTRATION	16
21.	TESTS, ANALYSES AND MEASUREMENTS - F0 GENERATION	17
22.	METHOD OF SACRIFICE - F0 GENERATION	19

Page 3 of 46 Testing Facility Study No. 20005045

23. NECROPSY - F0 GENERATION	19
24. TESTS, ANALYSES AND MEASUREMENTS - F1 GENERATION	21
25. METHOD OF SACRIFICE - F1 GENERATION MICE	22
26. NECROPSY - F1 GENERATION MICE	22
27. PROPOSED STATISTICAL METHODS	25
28. DATA ACQUISITION, VERIFICATION AND STORAGE	26
29. RECORDS TO BE MAINTAINED	27
30. KEY PERSONNEL	27
31. FINAL REPORT	28
32. ANIMAL WELFARE	28
33. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE	
STATEMENT	29
34. REFERENCES	29
35. PROTOCOL APPROVAL	31
ATTACHMENT 1 - PROPOSED STUDY SCHEDULE	34
ATTACHMENT 2 - MATERIAL SAFETY DATA SHEET	37
ATTACHMENT 3 - TEST SURSTANCE PREPARATION PROCEDURE	43

Page 4 of 46 Testing Facility Study No. 20005045

1. STUDY NUMBER

20005045

2. STUDY TITLE

Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) in Mice

3. PURPOSE

The purpose of this study is to test for toxic effects/disturbances resulting from PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) treatment of Crl:CD1(ICR) pregnant female mice and development of the embryo and fetus consequent to exposure of the dam from implantation to closure of the hard palate and during lactation. This study evaluates ICH Harmonised Tripartite Guideline stages C through F of the reproductive process and should detect effects on gestation, parturition, lactation and maternal behavior in female mice, and on the development of the offspring of the treated female mice. Because manifestations of effects induced during this period may be delayed in the offspring, observations will be continued through sexual maturity of the F1 generation mice.

4. TESTING FACILITY

Charles River Laboratories Preclinical Services 905 Sheehy Drive, Building A Horsham, PA 19044 USA

Main Tel: 215.443.8710 Fax: 215.443.8587

5. STUDY DIRECTOR

(Executive Director, Site Operations

and Toxicology)
Address as cited for Testing Facility
E-mail:

Page 5 of 46 Testing Facility Study No. 20005045

6. SPONSOR

Daikin Industries, LTD Chemical Division Umeda Center Building 4-12 Nakazaki-Nishi, 2-chrome Kita-ku, Osaka 530-8323 JAPAN

7. STUDY MONITOR

Daikin Industries, Ltd. 1-1 Nishi Hitotsuya Settsu City Osaka, 566-8585 JAPAN

Tel: +81.6.6349.5336 Fax: +81.6.6349.1095

E-mail:

8. PRINCIPAL INVESTIGATOR – TEST SUBSTANCE ANALYSIS

Principal Investigator:

Research Scientist, Analytical Chemistry Charles River Preclinical Services Montreal 22022 Transcanadienne Senneville Montreal, Quebec H9X 3R3 CANADA

Tel: +1.514.630.8200 ext. 2046

Fax: +1.514.630.8230

E-mail:

Page 6 of 46 Testing Facility Study No. 20005045

9. PRINCIPAL INVESTIGATOR - BIOANALYSIS

Principal Investigator: Research Scientist, Bioanalysis Charles River Preclinical Services Montreal 22022 Transcanadienne, Senneville Quebec H9X 3R3 CANADA

Tel: +1.514.630.8200 ext. 2224

Fax: +1.514.630.8230

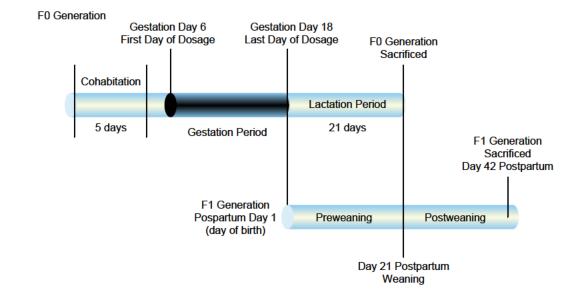
E-mail:

10. REGULATORY COMPLIANCE

This study will be conducted in compliance with the Good Laboratory Practice (GLP) regulations of the U.S. Environmental Protection Agency¹, the Ministry of Agriculture, Forestry and Fisheries² and the Organisation for Economic Co-operation and Development³ except for the bioanalysis and analytical portion of the study which will be conducted in compliance with the appropriate Organization for Economic Co-operation and Development (OECD) Principles of GLP (ENV/MC/CHEM(98)17.

All changes or revisions of this protocol shall be documented, approved by the Institutional Animal Care and Use Committee, signed by the Study Director, dated and maintained with the protocol.

The Testing Facility's Quality Assurance Unit (QAU) will audit the protocol, the raw data and the report, and will inspect critical phases of those portions of the study conducted at the Testing Facility in accordance with the Standard Operating Procedures of the Testing Facility.


The final report will include a compliance statement signed by the Study Director that the report accurately reflects the raw data obtained during the performance of the study and that all applicable GLP regulations were followed in the conduct of the study. Should deviations from GLP regulations occur, each will be described in detail, together with how the deviation might affect the quality or integrity of the study.

Should any portion of the study be conducted by a subcontractor or by the Sponsor, the Testing Facility management will ensure that a qualified Principal Investigator is identified by the site conducting that portion of the study. All procedures conducted by the Test Site will be specifically defined by the protocol, or will be described in detail in the Standard Operating Procedures of the Test Site. The QAU for this facility site will

Page 7 of 46 Testing Facility Study No. 20005045

conduct critical phase inspections and audit respective results and reports for that study portion according to the SOPs of that site. Such critical phase inspection reports and report audits will be submitted by the site to the Principal Investigator and the Study Director. The dates of the inspections and report submissions will be incorporated into a QAU Statement generated by that site and provided to the Testing Facility for inclusion in the final report. In addition, this site will provide a statement of GLP compliance, as described above, signed by the Principal Investigator for inclusion in the final report. The archival location of any records generated by this site will be identified in the final report.

11. SCHEMATIC OF STUDY DESIGN AND PROPOSED SCHEDULE¹

Dosage Period

 For additional details see Attachment 1 and "Tests, Analyses and Measurements" sections of the protocol.

Page 8 of 46 Testing Facility Study No. 20005045

12. TEST SUBSTANCE AND VEHICLE

12.1. Identification

12.1.1. Test Substance

PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid). Ammonium Perfluorohexanoate's CAS number is: 21615-47-4.

The test substance will be supplied as a 50% aqueous solution (lot identification will be documented in the raw data).

The Sponsor will provide to the Testing Facility documentation or certification of the identity, composition, strength and activity/purity of the test substance. This documentation will be included in the final report. The Sponsor's signature and approval of the protocol indicates that appropriate documentation of the method of synthesis, fabrication or derivation of the test substance is on file and that it is available to the appropriate regulatory agencies should it be requested.

12.1.2. Vehicle

Reverse osmosis membrane processed deionized water (R.O. deionized water). There will be no lot number for R.O. deionized water; this material is available from a continuous source at the Testing Facility.

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the vehicle that would interfere with the results of this study. Therefore, no analyses other than those mentioned in this protocol will be conducted.

12.2. Safety Precautions

Double nitrile gloves, dust-mist/HEPA-filtered mask, appropriate eye protection, uniform/lab coat and sleeves to be worn during formulation preparation and dosage. The Material Safety Data Sheet (MSDS) is attached to the protocol (Attachment 2).

12.3. Storage

Bulk Test Substance: Room temperature
Vehicle: Room temperature
Prepared Formulations: Room temperature

Page 9 of 46 Testing Facility Study No. 20005045

All test substance shipments should be addressed to the attention of

), Manager of Formulation Laboratory, at the previously cited
Testing Facility address and telephone number.

Shipments should include information concerning storage conditions and shipping cartons should be labeled appropriately. The recipient should be notified in advance of shipment.

13. FORMULATION

13.1. Frequency of Preparation

Formulations (solutions) will be prepared at least once weekly at the Testing Facility. Prepared formulations will be stirred continuously for **24 hours** prior to dosage administration and during dosage administration.

Detailed preparation procedures are attached to this protocol (Attachment 3).

13.2. Adjustment for Activity/Purity

The test substance will be considered 95% by weight of PFH acid for the purpose of dosage calculations.

13.3. Testing Facility Reserve Samples

The Testing Facility will reserve a sample of 5 mL of each lot of bulk test substance and bulk vehicle used during the course of the study. Samples will be stored under the previously cited conditions.

14. ANALYSES

The Sponsor will provide to the Testing Facility documentation or certification of the identity, composition, strength and activity/purity of the test substance. Results of these analyses will be included in the study report.

Samples additional to those described below may be taken if deemed necessary during the course of the study. Additional analyses, if required, will be documented by protocol amendment.

Page 10 of 46 Testing Facility Study No. 20005045

14.1. Acceptance Criteria

Acceptance criteria for analytical results for each group are defined as follows: 1) concentration results will be considered acceptable if the difference between the actual mean value and the targeted concentration is \pm 10%; and 2) homogeneity results for a group will be considered acceptable if the relative standard deviation (RSD) for the formulation, calculated as the RSD for the grand mean of the average values for top, middle and bottom locations, is \leq 5%. Results obtained outside of the criteria will be considered Out of Specification (OOS) and procedures for investigation and notification will be followed in the applicable laboratory Standard Operating Procedure covering OOS results.

14.2. Bulk Test Substance Stability

A sample of approximately 10 mL of the test substance will be taken on the last day of treatment and sent (ambient conditions) for analysis.

Stability will be assessed by normalization purity by HPLC and the value compared to the purity identified on the Certificate of Analysis. A report will be generated for this phase of the study and provided to the Study Director for inclusion in the final report. A process audit, rather than a critical phase inspection, will be performed for analysis of the bulk test substance.

14.3. Analyses of Prepared Formulations

Formulation analysis will be performed using Good Laboratory Practice (GLP)-validated HPLC method number (performed as Charles River Laboratories Preclinical Services Montreal Study number 211271). The Test Site Reference number for the work in this current study is 211271. A report will be generated for this phase of the study and provided to the Study Director for inclusion in the final report.

14.3.1. Concentration and Homogeneity

Concentration and homogeneity of the prepared formulations, including vehicle, will be verified during the course of this study. Quadruplicate samples (2 mL each), for analysis of concentration and homogeneity, will be taken from the top, middle and bottom of each concentration 24 hours or more after preparation, and no more than 24 hours before dosing on the first day all concentrations are prepared. Two samples from each quadruplicate set will be shipped (ambient conditions) for analysis; the remaining samples will be stored at room temperature at the Testing Facility as backup samples and shipped (ambient condition) one week after successful delivery of the initial shipment. Quadruplicate samples, for analysis of concentration, will be taken from the middle of

Page 11 of 46 Testing Facility Study No. 20005045

each concentration at the mid-point of the study period and on the last day all concentrations are prepared 24 hours or more after preparation, and no more than 24 hours before dosing. Two samples from each quadruplicate set will be shipped (ambient conditions) for analysis; the remaining samples will be stored at room temperature at the Testing Facility as backup samples and shipped (ambient condition) one week after successful delivery of the initial shipment. Backup samples will be stored room temperature until the results of the initial analyses are available, at which time the backup samples may be analyzed or discarded at the Test Site. Samples will be stored at room temperature until analysis.

14.3.2. Stability

Stability of the prepared test substance formulations will be assessed under Charles River Laboratories Preclinical Services Montreal Study Number 211271.

14.3.3. Shipping Instructions

Samples to be analyzed will be shipped (ambient conditions) to:

Principal Investigator: Research Scientist, Analytical Chemistry Charles River Preclinical Services Montreal 22022 Transcanadienne Senneville Montreal, Quebec H9X 3R3 CANADA

Tel: +1.514.630.8200 ext 2046

Fax: +1.514.630.8230

E-mail:

15. DISPOSITION

Unused prepared formulations will be discarded at the Testing Facility. Disposition of the remaining bulk test substance will be documented in the raw data.

Page 12 of 46 Testing Facility Study No. 20005045

16. TEST SYSTEM

16.1. Species/Strain and Reason for Selection

The Crl:CD1(ICR) mouse was selected as the Test System because: 1) it is one mammalian species accepted and widely used throughout the industry for nonclinical studies of developmental toxicity (embryo-fetal toxicity/teratogenicity); 2) this strain has been demonstrated to be sensitive to developmental toxicants; and 3) historical data and experience exist at the Testing Facility.

16.2. Number

Initial population acclimated: 100 virgin female mice.

Population selected for study: 80 mated female mice (20 per dosage group).

One hundred and sixty F1 generation pups (20 per sex per dosage group) will be selected for continued observations.

16.3. Body Weight and Age

Female mice will be ordered to be approximately 60 days of age at receipt, at which time they will be expected to have body weights of 25 g to 30 g each. Actual body weights will be recorded after receipt and will be documented in the raw data. The weight range will be included in the final report.

16.4. Sex

Female mice will be given the test substance and/or the vehicle. Male mice of the same source and strain will be used only as breeders and are not considered part of the Test System.

16.5. Source

Charles River Laboratories, Inc.

The mice will be shipped in filtered cartons by air freight and/or truck from Charles River Laboratories, Inc., to the Testing Facility.

Page 13 of 46 Testing Facility Study No. 20005045

16.6. Identification

16.6.1. F0 Generation Mice

Mice are permanently identified by tattoo according to the Standard Operating Procedures of the Testing Facility. Male mice are given unique permanent identification numbers upon assignment to the Testing Facility's breeder male mouse population. Female mice are assigned temporary numbers at receipt and given unique permanent identification numbers when assigned to the study on the basis of day 0 of presumed gestation body weights.

16.6.2. F1 Generation Mice

Pups will not be individually identified during lactation; all parameters will be evaluated in terms of the litter. At weaning, each mouse will be identified by tail tattoo.

17. ANIMAL HUSBANDRY

All cage sizes and housing conditions are in compliance with the *Guide for the Care and Use of Laboratory Animals*⁴.

17.1. Housing

17.1.1. F0 Generation Mice/F1 Generation Litters

F0 generation mice will be individually housed in nesting boxes or stainless steel, wire-bottomed cages, except during the cohabitation and postpartum periods. During cohabitation, each pair of mice will be housed in the male mouse's cage. Each dam and delivered litter will be housed in a common nesting box during the postpartum period.

17.1.2. F1 Generation Mice

After weaning, the F1 generation mice will be housed in nesting boxes. Mice will be pair housed (by dosage group) until at least PND 28, after which point the mice will be individually housed.

Page 14 of 46 Testing Facility Study No. 20005045

17.2. Nesting Material

Nesting material (bed-o'cobs®) will be provided.

Bedding will be changed as often as necessary to keep the animals dry and clean. Bedding changes will be documented in the raw data. Analyses for possible contamination are conducted on each lot of bedding and documented in the raw data.

17.3. Room Air, Temperature and Humidity

The animal room is independently supplied with at least ten changes per hour of 100% fresh air that has been passed through 99.97% HEPA filters. Room temperature will be maintained at 64°F to 79°F (18°C to 26°C) and monitored constantly. Room humidity will also be monitored constantly and maintained at 30% to 70%.

17.4. Light

An automatically controlled 12-hour light:12-hour dark fluorescent light cycle will be maintained. Each dark period will begin at 1900 hours (± 30 minutes). The light cycle may be adjusted by the Study Director or designee if deemed necessary to accommodate scheduled laboratory activities. Any such adjustment will be documented in the raw data.

17.5. Feed

Mice will be given Certified Rodent Diet[®] #5002 (PMI[®] Nutrition International) available *ad libitum* from individual feeders.

17.6. Water

Water will be available *ad libitum* from individual bottles attached to the cages and/or from an automatic watering access system. All water will be from a local source and passed through a reverse osmosis membrane before use. Chlorine will be added to the processed water as a bacteriostat; processed water is expected to contain no more than 1.2 ppm chlorine at the time of analysis. Water is analyzed monthly for possible bacterial contamination and twice annually for possible chemical contamination.

Page 15 of 46 Testing Facility Study No. 20005045

17.7. Contaminants

Neither the Sponsor nor the Study Director is aware of any potential contaminants likely to be present in the certified diet, the drinking water or the nesting material at levels that would interfere with the results of this study. Therefore, no analyses other than those routinely performed by the feed supplier or those mentioned in this protocol will be conducted.

18. DAY NUMBERING SYSTEM

Gestation day 0 is defined as the day a copulatory plug observed *in situ*.

The day of birth is designated lactation day 0 (postpartum day 0) in the Health Effects Test Guidelines - Reproduction and Fertility Effects (Office of Prevention, Pesticides and Toxic Substances 870.3800, August, 1998) and in the OECD Guideline for the Testing of Chemicals - Two-Generation Reproduction Toxicity Study (Section 4, No. 416, 22 January 2001). This same day is designated day 1 postpartum (day 1 of lactation) in the Standard Operating Procedures of the Testing Facility. Throughout this protocol, the day of birth will be designated day 1 postpartum (day 1 of lactation) and all subsequent ages of the F1 generation mice and days of the lactation period will be determined and cited accordingly. For the study report, the days will be cited according to the Health Effects Test Guidelines and OECD Guideline for the Testing of Chemicals.

19. RANDOMIZATION AND COHABITATION

Upon arrival, male and female mice will be assigned to individual housing on the basis of computer-generated random units. After acclimation, virgin female mice will be cohabited with breeder male mice, one male mouse per female mouse. The cohabitation period will consist of a maximum of five days. Female mice observed to have a copulatory plug *in situ* will be considered to be at day 0 of presumed gestation and assigned to individual housing.

Healthy mated female mice will be assigned to dosage groups based on computer-generated (weight-ordered) randomization procedures.

Day 1 of lactation (postpartum) is defined as the day of birth and is also the first day on which all pups in a litter are individually weighed (pup body weights will be recorded after all pups in a litter are delivered and groomed by the dam).

Litters will not be culled during the lactation period, because random selection of pups for culling could result in potential biases in pup viabilities and body weight gains during

Page 16 of 46 Testing Facility Study No. 20005045

this period.

All F1 generation mice will be weaned at the same age, based on observed growth and viability of the pups, on either day 21 postpartum or, if necessary, on day 28 postpartum. Should it be necessary to extend the lactation period to day 28 postpartum, all affected observational intervals will be adjusted accordingly by protocol amendment.

At weaning, a table of random units will be used to select 20 male and 20 female pups per group, resulting in a total of 160 F1 generation mice (80 per sex) chosen for continued evaluation. At least one male pup and one female pup per litter, when possible, will be selected.

20. ADMINISTRATION

20.1. Route and Reason for Choice

The oral (gavage) route was selected for use because: 1) in comparison with the dietary route, the exact dosage can be accurately administered; and 2) it is one possible route of human exposure.

20.2. Method and Frequency

20.2.1. F0 Generation Mice

Female mice will be given the test substance and/or the vehicle once daily on days 6 through 18 of presumed gestation. Dosages will be adjusted daily for body weight changes and given at approximately the same time each day.

20.2.2. F1 Generation Mice

F1 generation pups will not be directly given the test substance and/or the vehicle, but may be possibly exposed to the test substance or vehicle during maternal gestation (*in utero* exposure) or via maternal milk during the lactation period.

20.3. Rationale for Dosage Selection

In the combined developmental and perinatal/postnatal reproduction toxicity study (UZS00010), mice were administered the test substance at doses of 7, 35 and 175 mg/kg on days 6 through 18 of gestation. No mortality related to the test substance occurred on study, and no adverse clinical signs occurred during this study. Due to a lack of observed toxicity, dosages of 100, 350 and 500 mg/kg/day were selected for this study.

Page 17 of 46 Testing Facility Study No. 20005045

20.4. Dosage Levels, Concentrations and Dosage Volumes

Dosage Group	Number of Mice Assigned to Study	Dosage (mg/kg/day)	Concentration (mg/mL)	Dosage Volume (mL/kg)	Batch Number
I	20	0	0	5	B-20005045-A(Day.Month.Year)
II	20	100	20	5	B-20005045-B(Day.Month.Year)
III	20	350	70	5	B-20005045-C(Day.Month.Year)
IV	20	500	100	5	B-20005045-D(Day.Month.Year)

The test substance will be considered 95% by weight of PFH acid for dosage calculations.

21. TESTS, ANALYSES AND MEASUREMENTS - F0 GENERATION

21.1. Viability

All Periods: At least twice daily.

21.2. Clinical Observations and/or General Appearance

Acclimation Period: At least weekly.

Predosage Period: Day 0 of presumed gestation.

Dosage Period: Daily before dosage. Postdosage observations will

be recorded between one and two hours after dosage

administration. Time intervals for postdosage

observations may be adjusted if deemed appropriate by the Study Director or designee during the course of the study. Such adjustments will be documented

in the raw data.

Postdosage Period: Once daily.

Maternal Behavior: Days 1, 5, 8, 15 and 21 postpartum. Observed

abnormal behavior recorded daily.

Clinical observations may be recorded more frequently than cited above.

Page 18 of 46 Testing Facility Study No. 20005045

21.3. Body Weights

Acclimation Period: At least weekly.

Predosage Period: Day 0 of presumed gestation.

Dosage Period: Daily.

Postdosage Period: Daily.

21.4. Mating Performance

Mating will be evaluated daily during the cohabitation period and confirmed by observation of a copulatory plug observed *in situ*.

21.5. Duration of Gestation

The duration of gestation is calculated from day 0 of presumed gestation to the day the first pup is observed.

21.6. Reproductive Parameters

Fertility Index (percentage of matings that result in pregnancies).

Gestation Index (percentage of pregnancies that result in birth of live litters).

Number of offspring per litter (live and dead pups).

Number of implantation sites.

General condition of dam and litter during the postpartum period.

Viability Indices (percentage of pups born that survive 5 and/or 8 days).

Lactation Index (percentage of pups that survive 21 days).

Page 19 of 46 Testing Facility Study No. 20005045

21.7. Natural Delivery

F0 generation female mice will be evaluated for:

Adverse Clinical Signs Observed During Parturition.

Duration of Gestation (day 0 of presumed gestation to the time the first pup is observed).

Litter Size (defined as all pups delivered).

Pup Viability at Birth.

22. METHOD OF SACRIFICE - F0 GENERATION

Mice will be sacrificed by carbon dioxide asphyxiation. Live fetuses will be sacrificed by an intraperitoneal injection of sodium pentobarbital.

23. NECROPSY - F0 GENERATION

Gross lesions will be retained in neutral buffered 10% formalin for possible future evaluation (a table of random units will be used to select one control group mouse from which all tissues examined at necropsy will be retained, in order to provide control tissues for any possible histopathological evaluations of gross lesions). Unless specifically cited below, all other tissues will be discarded.

23.1. Scheduled Sacrifice - Pharmacokinetic Sample Collection

After completion of the 21 day postpartum period, female mice will be sacrificed and a gross necropsy of the thoracic, abdominal and pelvic viscera will be performed. **Five livers per group will be excised, weighed and frozen on dry ice.** Livers will be maintained frozen (≤-70°C) until shipment for analysis as described in section 23.4. The number and distribution of implantation sites will be recorded after staining with 10% ammonium sulfide⁶.

Mice that do not deliver a litter will be sacrificed on day 23 of presumed gestation and examined for gross lesions. Livers will be excised, weighed and frozen on dry ice. Livers will be maintained frozen (\leq -70°C) until shipment for analysis as described in section 23.4. Uteri will be stained with 10% ammonium sulfide to confirm the absence of implantation sites⁶.

Page 20 of 46 Testing Facility Study No. 20005045

The liver samples will be analyzed at PCS-MTL (test site reference no. 142578) using a validated LC-MS/MS method (PCS-MTL Study no. 141659). The bioanalytical method will be validated to meet the minimum requirements of the appropriate PCS-MTL Standard Operating Procedures. Remaining unused study samples will be retained at PCS-MTL for approximately 1 year after dispatch of the final report or until authorized to discard by the Study Director. A report will be generated for this phase of the study and provided to the Study Director for inclusion in the final report.

23.2. Dams with No Surviving Pups

Dams with no surviving pups will be sacrificed after the last pup is found dead or missing, presumed cannibalized. A gross necropsy of the thoracic, abdominal and pelvic viscera will be performed and implantation sites will be recorded after staining with 10% ammonium sulfide⁶. Livers will be excised, weighed and frozen on dry ice. Livers will be maintained frozen (≤-70°C) until shipment for analysis as described in section 23.4.

23.3. Mice Found Dead or Unscheduled Sacrifice

Mice that die or are sacrificed before scheduled termination will be examined for the cause of death or condition as soon as possible after the observation is made. The mice will be examined for gross lesions. The lungs, trachea and esophagus will be perfused and saved in neutral buffered 10% formalin for possible future evaluation. When not precluded by autolysis, the heart, kidneys, stomach and spleen will be retained in neutral buffered 10% formalin for possible histological evaluation. When not precluded by autolysis, livers will be excised, weighed and frozen on dry ice. Livers will be maintained frozen (≤-70°C) until shipment for analysis as described in section 23.4. Additional tissues may be retained at the discretion of the Study Director. When not precluded by autolysis, gravid uterine weights will be recorded (if possible). Pregnancy status and uterine contents of female mice will be recorded. Aborted fetuses, conceptuses in utero and/or delivered pups will be examined to the extent possible, using the same methods described for term fetuses/pups. Uteri of apparently nonpregnant mice will be stained with 10% ammonium sulfide to confirm the absence of implantation sites⁶. The number and distribution of implantation sites for delivered mice will be recorded after staining with 10% ammonium sulfide⁶.

Page 21 of 46 Testing Facility Study No. 20005045

23.4. Shipping Instructions

Samples to be analyzed will be shipped (on dry ice) to:

Principal Investigator:

ATT:

Charles River Preclinical Services Montreal

22022 Transcanadienne Senneville

Montreal, Quebec H9X 3R3

CANADA

Custom Clearance: H. Kennedy Inc Tel: +1.514.630.8200 ext 2224

Fax: +1.514.630.8230

E-mail:

Liver and Serum samples will be retained frozen (≤-70°C) until analysis. The recipient will be notified in advance of sample shipment. Copies of blood/liver collection data sheets will be included in the shipment.

24. TESTS, ANALYSES AND MEASUREMENTS - F1 GENERATION

24.1. Viability

Preweaning Period: Litters will be observed for dead pups at least twice

daily. The pups in each litter will be counted once

daily.

Postweaning Period: Daily.

24.2. Clinical Observations and/or General Appearance

Preweaning Period: Daily.

Postweaning Period: Daily.

Clinical observations may be recorded more frequently than cited above.

24.3. Body Weights

Preweaning Period: Days 1 (birth), 5, 8, 15, 21 postpartum.

Postweaning Period: Weekly.

Page 22 of 46 Testing Facility Study No. 20005045

24.4. Preweaning Developmental Landmark

Eye Opening: From day 11 postpartum.

24.5. Postweaning Developmental Observations

24.5.1. Sexual Maturation

Female mice will be evaluated for the age of vaginal patency, beginning on day 21 postpartum. Male mice will be evaluated for the age of preputial separation, beginning on day 27 postpartum.

25. METHOD OF SACRIFICE - F1 GENERATION MICE

Mice will be sacrificed by carbon dioxide asphyxiation. Pups will be sacrificed by an intraperitoneal injection of sodium pentobarbital (pups \leq 14 days of age) or by carbon dioxide asphyxiation (pups \geq 15 days of age).

26. NECROPSY - F1 GENERATION MICE

Gross lesions will be retained in neutral buffered 10% formalin for possible future evaluation (a table of random units will be used to select one control group mouse of each sex from which all tissues examined at necropsy will be retained, in order to provide control tissues for any possible histopathological evaluations of gross lesions). Unless specifically cited below, all other tissues will be discarded.

26.1. Scheduled Sacrifice

Five mice per sex per group (total 40 mice) will be sacrificed on day 42 postpartum for blood sample and liver collection for bioanalysis. [Blood samples will be collected as much as possible, but no less than 0.5 mL]. Livers will be excised, weighed and frozen on dry ice and maintained frozen (≤-70°C) until shipment for analysis (as described in section 23.4). Blood samples will be collected via the vena cava after sacrifice. The blood samples will be transferred into uncoated (red top) tubes and spun in a centrifuge. The resulting serum will be transferred into polypropylene tubes labeled at minimum with the protocol number, mouse number, group number, dosage level, day of study, collection interval, date of collection, species, generation and storage conditions. All samples will be frozen on dry ice as soon as possible and maintained frozen (<-70°C) until shipment for analysis as described in section 23.4. A gross necropsy of the thoracic, abdominal and pelvic viscera will be performed.

Page 23 of 46 Testing Facility Study No. 20005045

The remaining mice will be sacrificed by carbon dioxide asphyxiation on day 42 postpartum. A gross necropsy of the thoracic, abdominal and pelvic viscera will be performed.

26.1.1. Bioanalysis

The test substance will be used as reference material for bioanalysis.

The serum samples will be analyzed at PCS-MTL (test site reference no. 142577) using a validated LC-MS/MS method (PCS-MTL Study no. 141837). The bioanalytical method was validated and met the minimum requirements of the appropriate PCS-MTL Standard Operating Procedures. Remaining unused study samples will be retained at PCS-MTL for approximately 1 year after dispatch of the final report or until authorized to discard by the Study Director. A report will be generated for this phase of the study and provided to the Study Director for inclusion in the final report.

26.2. Pups Found Dead on Day 1 Postpartum

Pups that die before examination of the litter for pup viability will be evaluated for vital status at birth. The lungs will be removed and immersed in water. Pups with lungs that sink will be identified as stillborn; pups with lungs that float will be identified as liveborn and to have died shortly after birth. Pups with gross lesions will be preserved in Bouin's solution for possible future evaluation.

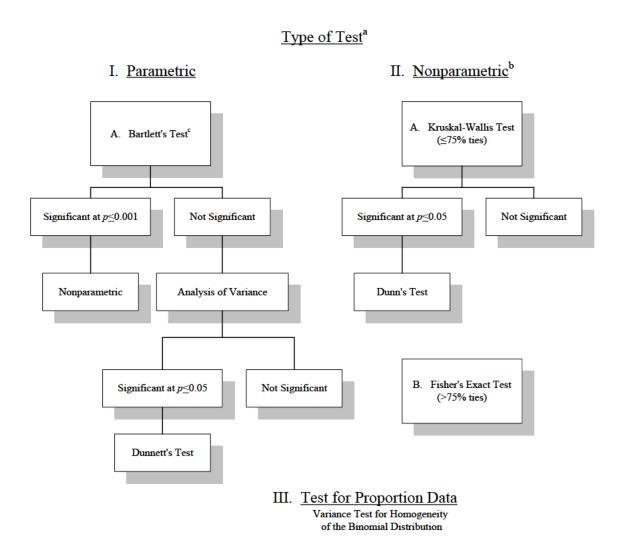
26.3. Pups Found Dead or Unscheduled Sacrifice (Preweaning)

Pups that die or are sacrificed before scheduled termination will be examined for gross lesions and the cause of death or condition as soon as possible after the observation is made. Pups found on days 2 to 4 postpartum will be preserved in Bouin's solution for possible future evaluation; pups found on days 5 to 21 postpartum will be preserved in neutral buffered 10% formalin.

Page 24 of 46 Testing Facility Study No. 20005045

26.4. Mice Found Dead or Unscheduled Sacrifice (Postweaning)

Mice that die or are sacrificed before scheduled termination will be examined for the cause of death or condition as soon as possible after the observation is made. The mice will be examined for gross lesions. When not precluded by autolysis, the heart, kidneys, lungs, stomach and spleen will be retained in neutral buffered 10% formalin for possible histological evaluation. When not precluded by autolysis, livers will be excised, weighed and frozen on dry ice. Livers will be maintained frozen (≤-70°C) until shipment for analysis as described in section 23.4. Additional tissues may be retained at the discretion of the Study Director.


26.5. Pups Not Selected for Continued Observation

All pups culled on day 21 postpartum will be sacrificed and examined for gross lesions; gross lesions will be preserved in neutral buffered 10% formalin. Necropsy will include a single cross-section of the head at the level of the frontal-parietal suture and examination of the cross-sectioned brain for apparent hydrocephaly.

Page 25 of 46 Testing Facility Study No. 20005045

27. PROPOSED STATISTICAL METHODS

Averages and percentages will be calculated. Litter values will be used where appropriate. Additional procedures and/or analyses may be performed, if appropriate.

- a. Statistically significant probabilities are reported as either $p \le 0.05$ or $p \le 0.01$.
- b. Proportion data are not included in this category.
- c. Test for homogeneity of variance.

Page 26 of 46 Testing Facility Study No. 20005045

Clinical observations and other proportional data will be analyzed using the Variance Test for Homogeneity of the Binomial Distribution⁷.

Continuous data (e.g., maternal body weights, body weight changes, feed consumption values and litter averages for percent male fetuses, percent resorbed conceptuses, fetal body weights and fetal anomaly data) will be analyzed using Bartlett's Test of Homogeneity of Variances and the Analysis of Variance, when appropriate [i.e., Bartlett's Test is not significant (p>0.001)]. If the Analysis of Variance is significant ($p\le0.05$), Dunnett's Test will be used to identify the statistical significance of the individual groups. If the Analysis of Variance is not appropriate [i.e., Bartlett's Test is significant ($p\le0.001$)], the Kruskal-Wallis Test is used (e<0.05), Dunn's Method of Multiple Comparisons will be used to identify the statistical significance of the individual groups. If there are greater than 75% ties, Fisher's Exact Test will be used to analyze the data.

Count data will be evaluated using the procedures described above for the Kruskal-Wallis Test¹¹.

28. DATA ACQUISITION, VERIFICATION AND STORAGE

Data generated during the course of this study will be recorded either by hand or using the *Argus Automated Data Collection and Management System*, the *Vivarium Temperature and Relative Humidity Monitoring System* and/or chart recorders. All data will be tabulated, summarized and/or statistically analyzed using the *Argus Automated Data Collection and Management System*, the *Vivarium Temperature and Relative Humidity Monitoring System, Microsoft*[®] *Excel* (part of Microsoft[®] Office 97/2000/2003/XP), Quattro Pro 8 and/or *The SAS System* (version 6.12). *Empower* (Waters Corporation) will be used for formulation sample analysis.

Data collection for serum and liver concentration analysis using LC-MS/MS will be performed using Analyst from AB Sciex. Statistical analysis, including regression analysis, and descriptive statistics such as arithmetic means and standard deviations, accuracy and precision will be performed using Watson laboratory Information Management system (LIMS) and Microsoft Excel. Tables will be prepared from retrospective manual entry on computer (Microsoft Word). All raw data and documents generated at PCS-MTL during this study and the final report will be transferred to the scientific archives of PCS-MTL for a period of approximately 1 year from finalization. Storage details following the 1 year archive period will be documented in the raw data.

Page 27 of 46 Testing Facility Study No. 20005045

Records will be reviewed by the Study Director and/or appropriate management personnel within 21 days after generation. All Testing Facility original records will be stored in the archives at the Testing Facility. All raw data will be bound and indexed. The archived raw data will be scanned and retained on CD-ROM in an Adobe[®] Acrobat PDF file. A copy of all raw data will be supplied to the Sponsor upon request. Preserved tissues will be stored at the Testing Facility for ten years after mailing of the draft final report, after which time the Sponsor will be contacted to determine the disposition of these materials.

29. RECORDS TO BE MAINTAINED

Protocol and Amendments.

Test Substance, Vehicle and/or Reagent Receipt, Preparation and Use.

Animal Acquisition.

Randomization Schedules.

Mating History.

Supportive Care (if prescribed by Staff Veterinarian).

General Comments.

Clinical Observations and/or General Appearance.

Blood Sample Collection, Processing and Shipment.

Body Weights.

Natural Delivery Observations and Litter Observations

Gross Necropsy Observations.

Organ Weights.

Photographs (if required).

Study Maintenance (room and environmental records).

Feed and Water Analyses.

Packing and/or Shipment Lists.

30. KEY PERSONNEL

Executive Director, Site Operations and Toxicology and Study Director: Aan M. Hoberman, Ph.D., DABT, Fellow ATS

Director of Reproductive and Neurobehavioral Toxicology: Elise M. Lewis, Ph.D.

Director of Operations: Matthew J. Vaneman, B.S.

Associate Director of Regulatory Compliance: Nancy A. Catricks, M.S.

Senior Manager of Study Management: Monica L. Davis, B.S., ROAP-GLP, ALAT

Senior Staff Veterinarian: Dena C. Lebo, V.M.D., Division Veterinarian

Chair, Institutional Animal Care and Use Committee: Joseph W. Lech, B.S., LAT

Consultant, Veterinary Pathology: W. Ray Brown, D.V.M., Ph.D., Diplomate, ACVP

Page 28 of 46 Testing Facility Study No. 20005045

31. FINAL REPORT

The Study Director will provide periodic updates of study progress to the Sponsor. Draft summary tables of unaudited computer-recorded data may accompany these updates. Statistical analyses will not be performed on these interim data.

A comprehensive draft final report will be prepared on completion of the study and will be finalized following consultation with the Sponsor. The report will include the following:

Summary and Conclusion.

Experimental Design and Method.

Evaluation of Test Results.

Appendices: Figures, Summary and Individual Tables Summarizing the Above Data, Protocol and Associated Amendments and Deviations, Study Director's GLP Compliance Statement, Reports of Supporting Data (if appropriate) and QAU Statement.

32. ANIMAL WELFARE

Animal care and use will be in accordance with the Animal Welfare Act regulations (9 CFR, Parts 1, 2 and 3), the conditions specified in the *Guide for the Care and Use of Laboratory Animals*⁴, the relevant SOPs of the Testing Facility, and the protocol. Anticipated or suspected clinical signs and supportive care agreed upon by the Study Director, veterinary staff and Sponsor should these clinical signs be observed are documented in the IACUC proposal for this study.

Adverse observations will be promptly reported to the Study Director and veterinary staff. The veterinarian may make recommendations regarding care of the animal(s) in addition to those already agreed upon and/or alteration of study procedures to ensure the well-being of the animal(s) should unanticipated responses or circumstances occur. All recommendations shall be discussed with the Study Director and the recommendations and subsequent actions properly documented in the study record. Supportive care of the animal(s) may occur without notification of the Sponsor when such supportive care, as determined by the Study Director, does not adversely affect the study objectives.

If the condition of the animal(s) warrants therapeutic intervention or alterations in study procedures above the previously-agreed-upon conditions, the Sponsor will be contacted, whenever possible, to discuss appropriate action. If the condition of the animal(s) is such that immediate measures must be taken to relieve pain and/or distress, the attending veterinarian will attempt to consult the Study Director prior to initiating medical action,

Page 29 of 46 Testing Facility Study No. 20005045

but the veterinarian has the authority to act immediately at his/her discretion to address the condition under these circumstances. The Sponsor will be informed by the Study Director of any such event as soon as possible.

33. INSTITUTIONAL ANIMAL CARE AND USE COMMITTEE STATEMENT

The procedures described in this protocol have been reviewed by the Testing Facility's Institutional Animal Care and Use Committee. All procedures described in this protocol that involve study animals will be conducted in a manner to avoid or minimize discomfort, distress or pain to the animals.

The signature of the Sponsor's representative below is assurance that the study is not an unnecessary duplication of previous work. Documentation for the necessity of this study may be obtained from the Sponsor. No alternative procedures were available to meet the stated purposes of the study.

34. REFERENCES

- (1) Federal Insecticide, Fungicide and Rodenticide Act/Toxic Substances Control Act (FIFRA/TSCA); Good laboratory practice standards; Final Rule 40 C.F.R Part 160/792; August 17, 1989. U.S. Environmental Protection Agency.
- (2) Good laboratory practice standards for toxicological studies on agricultural chemicals. 59-Nousan-No.3850; August 10, 1984. Repealed as 1 October, 1999. Notification 11-Nousan-No.6283. Japan: Ministry of Agriculture, Forestry and Fisheries, Japan (MAFF).
- (3) OECD Principles of good laboratory practices, [C(97)186/Final] (1998); Environmental Health and Safety Division. OECD Environment Directorate.
- (4) Institute of Laboratory Animal Resources Commission on Life Sciences and the National Research Council. *Guide for the care and use of laboratory animals*. Washington (D.C.): National Academy Press; 1996.
- (5) Das KP, Grey BE, Zehr RD et al. Effects of perfluorobutyrate exposure during pregnancy in the mouse. *Toxicol Sci* 2008;105(1):173-81.
- (6) Salewski E. Färbemethode zum makroskopischen nachweis von implantations stellen am uterus der ratte. G [Staining method for macroscopic demonstration of implantation sites in the rat uterus]. *Arch Pathol Exp Pharmakol* 1964;247:367.

Page 30 of 46 Testing Facility Study No. 20005045

- (7) Snedecor GW, Cochran WG. Variance test for homogeneity of the binomial distribution. *Statistical methods*. *6th Ed*. Iowa State University Press, Ames; 1967. p. 240-1.
- (8) Sokal RR, Rohlf FJ. Bartlett's test of homogeneity of variances. *Biometry: the principles and practice of statistics in biological research*. San Francisco (CA): Freeman & Co; 1969. p. 370-1.
- (9) Snedecor GW, Cochran WG. Analysis of variance. *Statistical methods*. *6th Ed*. Iowa State University Press, Ames; 1967. p. 258-98.
- (10) Dunnett CW. A multiple comparison procedure for comparing several treatments with a control. *J Am Stat Assoc* 1955;50:1096-121.
- (11) Sokal RR, Rohlf FJ. Kruskal-Wallis test. *Biometry: the principles and practice of statistics in biological research*. San Francisco (CA): Freeman & Co; 1969. p. 388-91.
- (12) Dunn OJ. Multiple comparisons using rank sums. *Technometrics* 1964;6(3):241-52.
- (13) Siegel S. The Fisher's exact probability test. *Nonparametric statistics for the behavioral sciences*. New York (NY): McGraw-Hill Co; 1956. p. 96-105.

Page 31 of 46. Testing Facility Study No. 20005045

35. PROTOCOL APPROVAL

35.1. Testing Facility Management

Stephen K. Durham, DVM, Ph.D., DACVP

Corporate Vice President Toxicology and Pathology Global Preclinical Services 21-569-2016

Date

Page 32 of 46 Testing Facility Study No. 20005045

35.1.1. Study Director

215EP-2010

Date

Executive Director, Site Operations and Toxicology Study Director

Page 33 of 46 Testing Facility Study No. 20005045

35.2. For The Sponsor^a

22 Sep 20/t

Toxicologist Study Monitor

a. Date of Sponsor Approval: 14 September 2010

Page 34 of 46 Testing Facility Study No. 20005045

ATTACHMENT 1 - PROPOSED STUDY SCHEDULE

Page 35 of 46 Testing Facility Study No. 20005045

PROPOSED SCHEDULE^{a,b}

21 SEP 2010	Animal Receipt and Experimental Start Date - Acclimation Begins (F0 generation mice).
29 SEP 2010 PM -04 OCT 2010 AM	Cohabitation Period.
30 SEP 2010 04 OCT 2010	First Possible Day 0 of Presumed Gestation. Last Possible Day 0 of Presumed Gestation.
06 OCT 2010 – 22 OCT 2010	Dosage Period - Days 6 through 18 of presumed gestation.
18 OCT 2010	First Possible Delivery (Day 18 of presumed gestation).
27 OCT 2010	Last Possible Delivery (Day 23 of presumed gestation).
23 OCT 2010	First Possible Day 23 of Presumed Gestation Female Sacrifice.
27 OCT 2010	Last Possible Day 23 of Presumed Gestation Female Sacrifice.
28 OCT 2010	Earliest Possible F1 Generation Preweaning Observation - Eye Opening Begins

a. The study initiation date is the date the Study Director signs the protocol.

b. Throughout this schedule, the day of birth is designated day 1 postpartum (day 1 of lactation) and all subsequent ages of the F1 generation mice and days of the lactation period will be determined and cited accordingly, as described above the protocol section, "Day Numbering System."

Page 36 of 46 Testing Facility Study No. 20005045

F1 generation pups not selected for

continued observation sacrificed).

16 NOV 2010 Last Possible Day 21 Weaning.

07 NOV 2010 Earliest Possible F1 Generation Postweaning

Observation - Sexual Maturation

28 NOV 2010 – 07 DEC 2010 F1 Generation Mice Scheduled Sacrificed

and Blood Sample Collection.

18 MAR 2011 Audited Draft Report - Submission Date.

11 MAY 2011 Experimental Termination Date.

Page 37 of 46 Testing Facility Study No. 20005045

ATTACHMENT 2 MATERIAL SAFETY DATA SHEET

Page 38 of 46 Testing Facility Study No. 20005045

Safety Data Sheet according to 1907/2006/EC, Article 31 Page 1/5

Printing date 28.11.2007

Revision: 30.11.2005

1 Identification of the substance/preparation and of the company/undertaking

- Product details
- · Trade name: PFH Ammonium Salt $\overline{(C-1500N)}$
- · Application of the substance / the preparation Emulsifier
- Manufacturer/Supplier:

DAIKIN INDUSTRIES, LTD.CHEMICAL DIVISION:

Umeda Center Bldg., 4-12, Nakazaki-Nishi2-chome, Kita-Ku, Osaka, JAPAN

Phone: (+81) 6-6373-4349 Fax: (+81) 6-6373-4389

- · Further information obtainable from: http://www.daikin.co.jp/chm/en/index.html
- Information in case of emergency: +81-6-6349-7521, +49-211-179 225, 1-256-306-5000

2 Hazards identification

Hazard description:

Xi Irritant

Information concerning particular hazards for human and environment:

The product has to be labelled due to the calculation procedure of the "General Classification guideline for preparations of the EU" in the latest valid version.

- R 41 Risk of serious damage to eyes.
- Classification system:

The classification is according to the latest editions of the EU-lists, and extended by company and literature

3 Composition/information on ingredients

- Chemical characterization
- Description: liquid solution. water 50%
- · Dangerous components:
- 21615-47-4 Ammonium Perfluorohexanoate

Xi; R 41 50.0%

Additional information: For the wording of the listed risk phrases refer to section 16.

4 First-aid measures

- · After inhalation: Supply fresh air; consult doctor in case of complaints.
- · After skin contact: Generally the product does not irritate the skin.
- After eye contact: Rinse opened eye for several minutes under running water. Then consult a doctor.
- · After swallowing: If symptoms persist consult doctor.

5 Fire-fighting measures

- Suitable extinguishing agents:
- CO2, powder or water spray. Fight larger fires with water spray or alcohol resistant foam. Special hazards caused by the substance, its products of combustion or resulting gases: Hydrogen fluoride (HF)
- Formation of toxic gases is possible during heating or in case of fire.
- Protective equipment: Wear fully protective suit.

(Contd. on page 2)

Page 39 of 46 Testing Facility Study No. 20005045

Page 2/5

Safety Data Sheet according to 1907/2006/EC, Article 31

Printing date 28.11.2007 Revision: 30.11.2005

Trade name: PFH Ammonium Salt (C-1500N)

(Contd. of page 1)

6 Accidental release measures

· Person-related safety precautions:

There is no acute toxic risk known to be associated with this substance. Use self-contained respiratory protective device and non-permeable gloves are recommended against inhalation and transdermal uptake (see attached ppt file)

· Measures for environmental protection:

Dilute with plenty of water.

Do not allow to enter sewers/ surface or ground water.

· Measures for cleaning/collecting:

Absorb with liquid-binding material (sand, diatomite, acid binders, universal binders, sawdust). Ensure adequate ventilation.

7 Handling and storage

- · Handling:
- · Information for safe handling:

Ensure good ventilation/exhaustion at the workplace.

Prevent formation of aerosols.

- See attached ppt file.
- · Information about fire and explosion protection: No special measures required.
- · Storage
- · Requirements to be met by storerooms and receptacles: No special requirements.
- · Information about storage in one common storage facility: Not required.
- · Further information about storage conditions: None.

8 Exposure controls/personal protection

- · Additional information about design of technical facilities: No further data; see item 7.
- $\cdot \textit{Ingredients with limit values that require monitoring at the workplace:}$

The product does not contain any relevant quantities of materials with critical values that have to be monitored at the workplace.

- · Additional information: The lists valid during the making were used as basis.
- · Personal protective equipment:
- · General protective and hygienic measures:

Immediately remove all soiled and contaminated clothing

Wash hands before breaks and at the end of work.

- Avoid contact with the eyes.
- · Respiratory protection:

In case of brief exposure or low pollution use respiratory filter device. In case of intensive or longer exposure use self-contained respiratory protective device.

· Protection of hands:

 ${\it The glove material has to be impermeable and resistant to the product/the substance/the preparation.}$

Due to missing tests no recommendation to the glove material can be given for the product/ the preparation/ the chemical mixture.

Selection of the glove material on consideration of the penetration times, rates of diffusion and the degradation

· Material of gloves

Double glove, supported nitrile or neoprene over latex under-glove, recommended for extended use. Gloves should be discarded at end of use if soiled.

· Penetration time of glove material

The exact break trough time has to be found out by the manufacturer of the protective gloves and has to be observed.

(Contd. on page 3)

- GB

Page 40 of 46 Testing Facility Study No. 20005045

Page 3/5

Safety Data Sheet according to 1907/2006/EC, Article 31

Printing date 28.11.2007

Revision: 30.11.2005

(Contd. of page 2)

Trade name: PFH Ammonium Salt (C-1500N)

Eye protection:

A

Tightly sealed goggles

· Body protection: Protective work clothing

General Information	
Form:	Solution
Colour:	Colourless
Odour:	Aromatic
Change in condition	
Melting point/Melting range	e: Undetermined.
Boiling point Boiling range	: 100°C
Flash point:	Not applicable.
Self-igniting:	Product is not selfigniting.
Danger of explosion:	Product does not present an explosion hazard.
Vapour pressure at 20°C:	23.0 hPa
Density:	Not determined.
Solubility in / Miscibility with	
water:	Fully miscible.
pH-value at 20°C:	7.0
Solvent content:	
Organic solvents:	0.0 %
Water:	50.0 %

10 Stability and reactivity

- $\cdot \textit{Thermal decomposition / conditions to be avoided: } No \textit{ decomposition if used according to specifications.}$
- · Dangerous reactions No dangerous reactions known.
- Dangerous decomposition products:
- Hydrogen fluoride
- Fluorophosgene on contact with naked flame or red hot objects.

11 Toxicological information

- A cute toxicity:
- · LD/LC50 values relevant for classification:

21615-47-4 Ammonium Perfluorohexanoate

Oral LD50 >2000 mg/kg (rat)

Dermal LD50 >2000 mg/kg (rat)

- Primary irritant effect:
- on the skin: No irritant effect.
- on the eye: Strong irritant with the danger of severe eye injury.

(Contd. on page 4)

Page 41 of 46 Testing Facility Study No. 20005045

Page 4/5

Safety Data Sheet according to 1907/2006/EC, Article 31

Printing date 28.11.2007 Revision: 30.11.2005

Trade name: PFH Ammonium Salt (C-1500N)

(Contd. of page 3)

· Sensitization: No sensitizing effects known.

· Additional toxicological information:

The product shows the following dangers according to the calculation method of the General EU Classification Guidelines for Preparations as issued in the latest version:

· Toxicokinetics, metabolism and distribution

ADME

Rat: Male: T1/2 = 1.0 hr, Female: T1/2 = 0.42 hr Monkey: Male: T1/2 = 5.3 hr, Female: T1/2 = 2.4 hr

· Repeated dose toxicity

90-day oral toxicity in rodents

Male NOEL = 10 mg/kg/day (body weight loss at > 50 mg/kg, lower Cholesterol and Ca)

Female $NOEL = 50 \, mg/kg/day$ (lower globulin at 200 mg/kg)

 $\cdot \mathit{CMR}\ effects\ (\mathit{carcinogenity}, \mathit{mutagenicity}\ \mathit{and}\ \mathit{toxicity}\ \mathit{for}\ \mathit{reproduction})$

Combined repeated dose toxicity with the reproduction/development toxicity screening test Reproductive(OECD TG 422)

Reproductive(OECD 1G 422) Male & Female NOAEL = 300,450 mg/kg/day (F1:no reproductive changes)

12 Ecological information

- · Information about elimination (persistence and degradability):
- · Other information: The product is difficultly biodegradable.
- · Ecotoxical effects:
- · Acquatic toxicity:

Acute toxicity to Daphnia magna

 $24 \ hr \ EC50 = >100 \ mg/L$

 $48 \ hr \ EC50 = >100 \ mg/L$

 $NOEC = >100 \, mg/L$

Acute toxicity to Fish

 $96 \ hr \ LC50 = >100 \ mg/L$

 $NOEC = >100 \, mg/L$

Algal inhibition test

72 hr EbC50 = 90 mg/L

 $0-72 \ hr \ ErC50 = 86 \ mg/L$

 $NOEC = 50 \, mg/L$

· General notes:

Water hazard class 1 (German Regulation) (Self-assessment): slightly hazardous for water Do not allow undiluted product or large quantities of it to reach ground water, water course or sewage system.

13 Disposal considerations

- · Product:
- · Recommendation

Must not be disposed together with household garbage. Do not allow product to reach sewage system.

- \cdot Uncleaned packaging:
- · Recommendation: Disposal must be made according to official regulations.
- · Recommended cleansing agents: Water, if necessary together with cleansing agents.

(Contd. on page 5)

Page 42 of 46 Testing Facility Study No. 20005045

Page 5/5

Safety Data Sheet according to 1907/2006/EC, Article 31

Printing date 28.11.2007 Revision: 30.11.2005

Trade name: PFH Ammonium Salt (C-1500N)

(Contd. of page 4)

14 Transport information

- · Land transport ADR/RID (cross-border) · ADR/RID class:
- · Maritime transport IMDG:
- · IMDG Class:
- · Marine pollutant: No
- · Air transport ICAO-TI and IATA-DGR:

15 Regulatory information

· Labelling according to EU guidelines:

Observe the general safety regulations when handling chemicals.

The product has been classified and marked in accordance with EU Directives / Ordinance on Hazardous

- · Code letter and hazard designation of product:
- Xi Irritant
- · Risk phrases:
- 41 Risk of serious damage to eyes.
- · Safety phrases:
- 23 Do not breathe gas/fumes/vapour/spray (appropriate wording to be specified by the manufacturer).
- 26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
- 39 Wear eye/face protection.
- 60 This material and its container must be disposed of as hazardous waste.
- · National regulations:
- · Waterhazard class: Water hazard class 1 (Self-assessment): slightly hazardous for water.

This information is based on our present knowledge. However, this shall not constitute a guarantee for any specific product features and shall not establish a legally valid contractual relationship.

- · Relevant R-phrases
- 41 Risk of serious damage to eyes.
- · Department issuing MSDS: Toxicology and Product Regulatory
- · Contact: www.daikin.co.jp/chm/

Page 43 of 46 Testing Facility Study No. 20005045

ATTACHMENT 3 TEST SUBSTANCE PREPARATION PROCEDURE

Page 44 of 46 Testing Facility Study No. 20005045

ATTACHMENT 3

TEST SUBSTANCE PREPARATION PROCEDURES

Test Substance: PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic

Acid); supplied as a 50% aqueous solution

Vehicle: R.O. deionized water

A. Purpose:

The purpose of this procedure is to provide a method for the preparation of the dosage solutions of the test substance for oral (gavage) administration to mice on Study No. 20005045.

B. General Information:

- 1. All solution containers will be labeled and color-coded. Each label will specify the study number, vehicle or test substance identification, batch number, concentration, dosage level, dosage group, preparation date, expiration date, and storage conditions, as applicable.
- 2. Formulations (solutions) of the test substance will be prepared at least once weekly at the Testing Facility by direct dilution of the Sponsor-supplied stock test substance solution with the vehicle; the formulations are stable for at least 10 days. Prepared formulations will be stirred continuously for at least 24 hours prior to dosage administration.
- 3. Formulations (solutions) will be administered at a final dosage volume of 5 mL/kg.
- 4. Safety:
 - X Double nitrile gloves, uniform/lab coat, goggles or safety glasses with side shields
 - X Dust mist/HEPA-filtered Mask
 - Half-Face Respirator
 - ____ Full-Face Respirator/Positive Pressure Hood
 - X Tyvek[®] Sleeves

Page 45 of 46 Testing Facility Study No. 20005045

- 5. The test substance will be considered 95% by weight of PFH acid for the purpose of dosage calculations.
- 6. Sampling requirements: Cited in protocol
- 7. Storage: Cited in protocol
- C. Preparation of the Dosage Solution for Dosage Group I (0 mg/mL):

NOTE: The dosage formulation for Dosage Group I, which contains the vehicle only, will be prepared, sampled and aliquotted prior to the handling of the test substance.

- 1. Add the required amount of vehicle to an appropriately sized and labeled container (See TA/S DILUTION CALCULATION SHEET).
- 2. Add a magnetic stir bar to the container. Place the container on a magnetic stir plate and mix continuously prior to sampling and/or aliquotting.
- 3. Aliquot the vehicle into an appropriate number of appropriately sized and labeled containers. Aliquots will be stored at room temperature.
- 4. On the day prior to dosage administration, remove the required number of aliquots from storage. Add a magnetic stir bar to the container. Place the container on a magnetic stir plate and stir continuously at ambient temperature for **at least 24 hours** prior to dosage administration. Continue to mix the vehicle during dosage administration. Any vehicle remaining after being used for dosage administration will be discarded at the Testing Facility.
- D. Preparation of the Test Substance Dosage Solutions for Dosage Groups II through IV:
 - 1. Weigh the required amount of the Sponsor-supplied stock test substance solution (in grams) in an appropriately sized volumetric flask (See TA/S DILUTION CALCULATION SHEET).
 - 2. QS to the final required volume with vehicle (See TA/S DILUTION CALCULATION SHEET).

Page 46 of 46 Testing Facility Study No. 20005045

- 3. Add a magnetic stir bar to the flask. Place the flask on a magnetic stir plate and mix continuously for at least 24 hours prior to and during sampling and/or aliquotting.
- 4. Aliquot the formulation into an appropriate number of appropriately sized and labeled containers. Aliquots will be stored at room temperature and used within 10 days after the date of preparation.
- 5. On the day prior to dosage administration, remove the required number of aliquots from storage. Add a magnetic stir bar to the container. Place the container on a magnetic stir plate and stir continuously at ambient temperature for **at least 24 hours** prior to dosage administration. Continue to mix the formulation during dosage administration. Any formulation remaining after being used for dosage administration will be discarded at the Testing Facility.
- 6. Repeat steps D1 through D5 for each concentration.

Version:	20005045(15.SEP.2010)	# of pages:	3

Protocol Amendment No. 1

Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) in Mice

Testing Facility Study No. 20005045

1. Section 23.3. Mice Found Dead or Unscheduled Sacrifice

Fecal samples previously collected from the following mice will be shipped to Zoologix for evaluation of *clostridium*. Samples will be shipped on dry ice to Zoologix, Inc., 9811 Owensmouth Ave, Suite 4, Chatsworth, CA 91311.

Mouse No.	Day of Death	Number of Pellets			
Group	I [0 (Vehicle) mg/kg/d	ay]			
8314	Lactation Day 17	2			
8316	Lactation Day 17	2			
8328	Lactation Day 15	1			
G ₁	oup II (100 mg/kg/day)				
8333	Lactation Day 17	1			
8343	Lactation Day 14	3			
8344	Lactation Day 15	1			
8346	Lactation Day 14	3			
8347	Lactation Day 14	3			
8348	Lactation Day 14	3			
Group III (500 mg/kg/day)					
8387	Lactation Day 14	3			
8388	Lactation Day 14	3			

The analyses will be conducted using good scientific practices and according to the Standard Operating Procedures of the Test Site. Results of this evaluation will be reported in the final report.

Justification(s):

Fecal samples will be evaluated from these lactating mice that died prior to scheduled termination to rule out any other cause of death except stress from nursing.

Testing	Facility	Study	No.	2000	5045

1	Protocol	Amendment No	. 1
J	HOWGOI	Amendment No). 1

Page 2 Testing Facility Study No. 20005045

Amendment Approval:

Date:	/	\supset	Dec	7010	

Executive Director, Site Operations and Toxicology Study Director

Protocol Amendment No. 2

Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) in Mice

Testing Facility Study No. 20005045

1. Section 14.3. Analyses of Prepared Formulations Section 14.3.2. Stability

The method validation number for formulation analysis was 211052 rather than 211271.

Justification:

This change is being made to correct the method validation number.

Protocol	An	nendr	nent	No.	2

Page 2 Testing Facility Study No. 20005045

Amendment Approval:

_Date: 18 JUN-7011

Executive Director, Site Operations and Toxicology Study Director

APPENDIX 2 - DEVIATIONS

DEVIATIONS

All deviations that occurred during the study have been authorized/acknowledged by the Study Director, assessed for impact, and documented in the study records. All protocol deviations that could have impacted the quality or integrity of the study are listed below.

None of the deviations were considered to have impacted the overall integrity of the study or the interpretation of the study results and conclusions.

DL - Day of lactation (dams) PPD – Postpartum day (litters)

In-life Observations, Measurements and Evaluations

- Maternal observations for F0 generation mice 8331 and 8332 (Group II) were not recorded on DL 4 (23 October 2010), mouse 8362 (Group III) on DL 14 (2 November 2010) and mouse 8315 (Group I) on DL 20 (8 November 2010). These deviations did not adversely affect the outcome or interpretation of the study because sufficient data were collected from other mice.
- Litter observations were not recorded for dam 8388 (Group IV) on DL 19 (9 November 2010). All pups appeared normal the next day. This deviation did not adversely affect the outcome or interpretation of the study because there was no impact.
- F1 generation mouse 9035 (Group II) was discovered to be female after originally being weaned as a male. As a result, this mouse missed her vaginal patency testing between PPD 20 through PPD 26. This mouse passed vaginal patency on the day the error was discovered (17 November 2010). This deviation did not adversely affect the outcome or interpretation of the study because the data was handled appropriately and sufficient data were available from other mice.
- F1 generation mouse 9102 (Group II) was discovered to be male after originally being weaned as a female. As a result, this mouse missed his first day of preputial testing. This mouse did not pass testing on the first day the error was discovered (14 November 2010). This deviation did not adversely affect the outcome or interpretation of the study because the data was handled appropriately and sufficient data were available from other mice.

Postmortem

- F0 generation female mouse 8361 (Group III) did not receive a body weight prior to necropsy. This deviation did not adversely affect the outcome or interpretation of the study because sufficient data were available from other mice.
- A liver sample could not be located for F1 generation male mouse 9049 (Group III) on PPD 23 (12 November 2010). This deviation did not adversely affect the outcome or interpretation of the study because sufficient data were available from other mice.

Formulations

- The additional amount of vehicle prepared on 16 October 2010 did not mix overnight prior to dosing. This deviation did not adversely affect the outcome or interpretation of the study because this was the control article and there was no impact on the conduct of the study.
- On 5 and 16 October 2010, the samples taken for analysis were sampled outside of the 24 hour criteria stipulated in the protocol. The sample taken on 5 October was sampled 43 minutes late; while the latter sample was taken one hour early. This deviation did not adversely affect the outcome or interpretation of the study because the time deviated was minimal.

Other

- Pups belonging to dams that died (8343, 8346, 8348; Group II) remained on study at the discretion of the Study Director on DL 13 (3 November 2010). This deviation did not adversely affect the outcome or interpretation of the study because data was appropriately documented in the raw data.
- Fecal samples were collected on study per Veterinarian and Study Director request. The collection and shipping procedures were not documented in the raw data, there was no SOP in place for fecal collections and shipment, and there was no documentation of the collected/shipped amount of fecal samples and the shipping condition. These deviations did not adversely affect the outcome or interpretation of the study because there was no effect on the data. Samples were collected at the recommendation of the veterinarian and would fall within the scope of the veterinary procedures.

APPENDIX 3 - CERTIFICATE OF ANALYSIS

Certificate of Analysis

Daikin Industries,LTD.

Name of Sample

PFH Ammonium Salt (C-1500N)

Lot.

7005

Date of Analysis

May 14, 2009

Purify

47.4% (Effective component in Water)

*50.8*0.934%=47.4%

COMPOSITION

identity		Conc.
#1	Ammonium Perfluorohexanoate CAS RN. 21615-47-4	93.4%
#2	Unknown	6.6%

Total 100%

Analysis system (HPLC)

Equipment

: Waters Alliance2695

Detector

: Waters 2487UV

Detection wavelength

: 210nm

Analysis condition

Column

: TOSOH TSKGel ODS120T 4.6mm×150mm

Temp.

:40 °C

Mobile phase

: A=acetonitrile , B=Solution of 0.6% perchloric acid in water

Gradient

 $:A:B=50:50(mass\%) (0-10min.) \rightarrow 90:10(mass\%) (15-20min.)$

Injection volume

: 20µL

Injection Concentration : 1% (dilute 50times with water)

Chemical R&D Center Unidyne Group Senior Researcher

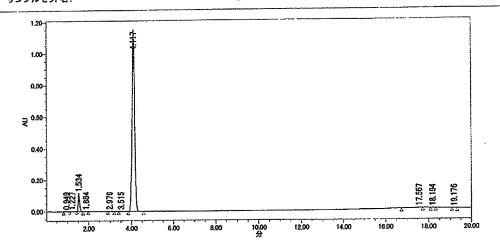
SIGNATURE

DATE: May 18, 2009

Analysis

サンブル名: サンプルの種類: パイアル:

C1500N 未知試料 82


注入#: 注入量: 分析時間: サンブルセット名: 20.00 μ i 20.00 分

分析担当者: 分析日: 取り込みメソッドセット: 解析日: 解析メソッド: チャンネル名: 解折チャンネルの説明:

System

2009/05/14 11:49:44 090514S 2009/05/14 13:55:17

C1500N 2487チャンネル1

	成分名	Retention Time(min.)	Area {μVsoc.)	Area (%)	Height (μV)	
1		0.949	17634	0.18	2554	ii
2		1.227	20551	0.20	1927	
3		1.534	574660	5.71	116134	
4		1.884	5543	0.06	710	
5		2.976	2424	0.02	414	
6		3.515	4940	0,05	361	
7		4.117	9390042	93,38	1144218	
8	T	17.567	29475	0.29	984	
9		18.194	6956	0.07	1098	
10		19.176	3881	0.04	592	

1/1 ベージ

Amended expire date

Test Substance

: PFH Ammonium Salt (Ammonium salt of Perfluorinated

Hexanoic Acid). Ammonium Perfluorohexanoate's

CAS number

: 21615-47-4.

Name of test substance

: C1500N

Lot No.

: 7005

EXPIRY DATE

: 31 July 2012

Sep 16, 2010

Daikin Industries, LTD
Chemical Division

APPENDIX 4 - ANALYTICAL REPORT

FINAL REPORT

Test Site Ref. No. 211271 Testing Facility Study No. 20005045

Analysis of Dose Formulation Samples and Bulk Material Purity and Stability from Study Titled: "Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium Salt of Perfluorinated Hexanoic Acid) in Mice" by High Performance Liquid Chromatography

TEST SITE:

Charles River Laboratories Preclinical Services Montreal 22022 Transcanadienne Senneville, Quebec Canada H9X 3R3

TESTING FACILITY:

Charles River Laboratories Preclinical Services 905 Sheehy Drive, Building A Horsham, PA 19044 USA

SPONSOR:

Daikin Industries, LTD Chemical Division Umeda Center Building 4-12 Nakazaki-Nishi, 2-chrome Kita-ku, Osaka 530-8323 Japan

17 June 2011

Page 1 of 27

TABLE OF CONTENTS

LIS	ST OF TABLES	3
LIS	ST OF FIGURES	4
LIS	ST OF APPENDICES	5
1.	COMPLIANCE STATEMENT	
	QUALITY ASSURANCE STATEMENT	
2.		
3.	SUMMARY	8
4.	INTRODUCTION	9
5.	REFERENCE STANDARD AND VEHICLE	9
	5.1. Reference Standard (Bulk Substance)	9
	5.2. Vehicle	10
6.	EXPERIMENTAL PROCEDURES	10
	6.1. Standard Stock Solutions	10
	6.2. Standard Solutions	10
	6.3. Spiked Samples	10
	6.4. Study Samples	10
	6.5. Bulk Test Substance Stability	11
	6.6. Analysis	11
	6.7. System Suitability	12
	6.8. Data Collection and Statistical Methods	13
	6.9. Quality Assurance	13
	6.10. Archives	13
7.	RESULTS AND DISCUSSION	13
	7.1. System Suitability	13
	7.2. Study Samples	14
	7.3. Bulk Test Substance Stability	14
8.	CONCLUSION	14

Testing Facility Study No. 20005045

Page 3 Test Site Ref. No. 211271

LIST OF TABLES

Table 1	Study Samples - Concentration and Homogeneity	15
Table 2	Study Samples - Concentration.	16
Table 3	Bulk Substance Stability	17

Page 4 Test Site Ref. No. 211271

LIST OF FIGURES

Figure 1	Representative Standard Chromatogram (Nominal Concentration: 190 μg/mL)	18
Figure 2	Representative Blank Vehicle	19
Figure 3	Representative Study Sample Chromatogram (Group 4, Mid Sampling Date: 16 October 2010, Nominal Concentration: 100 mg/mL; Nominal Injected Concentration: 200 µg/mL)	20
Figure 4	Representative Bulk Substance Sample (Full Scale)	21
Figure 5	Representative Blank Sample (Full Scale)	22
Figure 6	Representative Bulk Substance Sample (Auto-scaled)	23

Testing Facility Study No. 20005045

Page 5 Test Site Ref. No. 211271

LIST OF APPENDICES

Certificate of Analysis	24
	Certificate of Analysis

Testing Facility Study No. 20005045

Page 6 Test Site Ref. No. 211271

1. COMPLIANCE STATEMENT

This portion of the study, conducted at Charles River Laboratories Preclinical Services Montreal (PCS-MTL), 22022 Transcanadienne, Senneville, Quebec, Canada, H9X 3R3, complied with the appropriate GLP principles of the Organization for Economic Co-operation and Development (OECD), (ENV/MC/CHEM(98)17.

17 Da 2011

Date

Principal Investigator Research Scientist, Analytical Chemistry Laboratory Sciences Charles River Laboratories

Page 7 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

2. QUALITY ASSURANCE STATEMENT

In compliance with the Good Laboratory Practice Regulations, Reference No. 211271 has been audited. The data presented in the final report accurately represent the data collected during the conduct of the study.

Phase or Segment Audited	Date of Inspection	Dates of Reports to Test Site Management and Principal Investigator	Dates of Reports to Testing Facility Management/ Study Director & Lead QA	
Protocol Review	14 October 2010	14 October 2010	07 December 2010	
Anchem Dose Data Anchem Dose Report - Report Review SOP Review - Report Review Anchem Dose Report Tabulation	17 November 2010 to 23 November 2010	23 November 2010	07 December 2010	
Final Report Review	06 June 2011 to 07 June 2011	07 June 2011	15 June 2011	
Protocol Amendment Review	14 June 2011	14 June 2011	15 June 2011	

In addition to the above-mentioned inspections, process based and/or routine facility inspections were also conducted during the course of this study. Any findings specific to this study from these inspections are reported with this QA Statement. All other observations and the dates of reports to PCS-MTL Management are retained on file according to PCS-MTL Quality Assurance Standard Operating Procedures.

Inspector
Quality Assurance
Charles River Laboratories

Page 8 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

3. SUMMARY

The purpose of this phase of the study was to determine the concentration, the purity and stability of the bulk drug substance of Perfluorinated Hexanoic Acid (PFH) ammonium salt in dose formulations from Charles River Laboratories Study No. 20005045 titled "Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of Perfluorinated Hexanoic Acid) in Mice" by high performance liquid chromatography (HPLC).

The method of analysis, documented in Analytical Procedure AP.211271.SL.02 for concentration determination was previously validated under Study No. 211052. The method documented in Analytical Procedure AP.211271.PU.02, for bulk material purity and stability analysis was provided by the Sponsor.

The study samples analyzed were within the acceptance criteria of $\pm 10\%$ of their mean nominal concentrations. For homogeneity, the relative standard deviation (RSD) for the formulation for the grand mean of the average value for the top, middle and bottom formulations for each group was $\leq 5\%$. Homogeneity results show that the formulation technique used produces homogenous preparations.

The bulk material was analyzed for purity and stability, and the result was compared to the purity value stated on the Certificate of Analysis (CoA) and was deemed acceptable.

Page 9
Test Site Ref. No. 211271

Testing Facility Study No. 20005045

4. INTRODUCTION

A high performance liquid chromatographic (HPLC) method was used to determine the concentration of test article in dose formulations and the purity and stability of the bulk drug substance from Study No. 20005045 titled "Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium Salt of Perfluorinated Hexanoic Acid) in Mice".

The method of analysis, documented in Analytical Procedure AP.211271.SL.02 for concentration determination was previously validated under Study No. 211052. The method documented in Analytical Procedure AP.211271.PU.02, for bulk material purity and stability analysis was provided by the Sponsor.

For the work detailed in this report, the study initiation date was 21 September 2010 (the signature date of the protocol) and the completion date is the signature date of the final report. The experimental start date was 07 October 2010 and the experimental end date was 01 November 2010.

5. REFERENCE STANDARD AND VEHICLE

5.1. Reference Standard (Bulk Substance)

Identity: PFH Ammonium Salt (C-1500N)

Lot number: 7005

CAS number: 21645-47-4

Purity: 47.4% (total purity) as per CoA

Expiry date: 31 July 2012 Description: Clear liquid

Storage conditions: Room temperature, light

Handling precautions: As per the material safety data sheets

Supplier: Charles River Laboratories Preclinical Services Pennsylvania

(PCS-PA)

The reference standard characterization is the responsibility of the Sponsor who provided a Certificate of Analysis (Appendix 1) for inclusion in this study report. The reference standard was supplied as a 50% aqueous solution.

Details of identity, purity, storage conditions and handling precautions were supplied by the Sponsor. Remaining reference standard was used on subsequent studies for the Sponsor.

Page 10 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

5.2. Vehicle

Identity: Reverse osmosis deionized water

Storage conditions: Room temperature

6. EXPERIMENTAL PROCEDURES

6.1. Standard Stock Solutions

Standard stock solutions of reference standard were prepared in diluent (acetonitrile:methanol:water (10:10:80, v/v/v) containing 0.1% (v/v) phosphoric acid) at a nominal concentration of 2.37 mg/mL.

6.2. Standard Solutions

Standard solutions of reference standard were prepared in diluent covering the nominal concentration range of 23.7 to 356 μ g/mL.

6.3. Spiked Samples

Spiked samples were prepared in vehicle at nominal concentrations of 0.500 and 200 mg/mL. Each was diluted with diluent to give nominal concentrations of 40.0 and 200 μ g/mL, respectively.

6.4. Study Samples

Formulation samples (top, middle and bottom) from Study No. 20005045, prepared on 04 October 2010, (Group 1 samples were prepared on 05 October 2010) were received at ambient room temperature on 06 October 2010 for concentration and homogeneity determination. Furthermore, formulation samples (middle) prepared on the 08 and 15 October 2010 (Group 1 samples prepared on the 09 and 16 October 2010, respectively), were received at ambient room temperature on the 18 and 19 October 2010, respectively, for concentration analysis. All samples were stored at ambient room temperature until analysis. The samples at nominal concentrations of 20, 70 and 100 mg/mL were diluted with diluent to give injected concentrations within the range of the calibration curve.

For concentration analysis, the results were considered acceptable if the difference between the actual mean value and the targeted concentration was within $\pm 10\%$. For homogeneity, the results were considered acceptable if the relative standard deviation (RSD) for the formulation calculated as the RSD for the grand mean of the average values for the top, middle and bottom locations was $\leq 5\%$.

Page 11 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

6.5. Bulk Test Substance Stability

A 10 mL sample of the test substance (50% w/w) was received from Study No. 20005045 for stability assessment. The sample was shipped at ambient room temperature on 26 October 2010 and received on 27 October 2010. The sample was stored at ambient room temperature and analyzed on 01 November 2010. The bulk substance was diluted 50 times with diluent (ultra pure water) to give a target concentration of 1% test substance. Stability was assessed by HPLC purity normalization and the result obtained was compared against the purity value stated in the Certificate of Analysis.

6.6. Analysis

The standard, blank, spiked sample and study sample solutions were analyzed for concentration by HPLC using the following conditions:

HPLC system: Agilent Technologies 1100 series

Data capture system: Waters Corporation Empower 2 (Build 2154 FR2 SPB), Column: Zorbax Eclipse Plus C-18, 3.5 µm (100 x 2.1 mm ID)

Column temperature: Set at 35°C

Mobile phase gradient elution: Eluant A: 20 mM sodium phosphate in water

Eluant B: 10 mM sodium perchlorate in acetonitrile

Time (min)	% B
0	10
8	70
8.1	10
15	10

Flow-rate: 0.350 mL/min

Ultra-violet detection wavelength: 210 nm (response time: 0.5 s)

Injection volume: 25 µL

Sample tray temperature: Set at 20°C Reference standard retention time: ~7.0 min

Page 12

Testing Facility Study No. 20005045

Test Site Ref. No. 211271

The blank and bulk substance solutions were analyzed for purity and stability using the following conditions:

HPLC system: Agilent Technologies 1100 series

Data capture system: Waters Corporation Empower 2 (Build 2154 FR2 SPB)

Column: TOSOH TSKGel ODS120T, (150 x 4.6 mm ID)

Column temperature: Set at 40°C

Mobile phase gradient elution: Eluant A: Acetonitrile

Eluant B: 0.6% perchloric acid in water

Time (min)	% B
0	50
10	50
15	10
20	10
20.1	50
25	50

Flow-rate: 1.00 mL/min

Ultra-violet detection wavelength: 210 nm Injection volume: $20 \mu L$

Sample tray temperature: Set at 20°C Reference standard retention time: ~3.6 min

6.7. System Suitability

For concentration and homogeneity determination, the reproducibility of the chromatographic system was determined by injecting a calibration standard solution, at a nominal concentration of 190 μ g/mL in triplicate, at the beginning, throughout and at the end of the chromatographic run.

For bulk substance stability, the reproducibility of the chromatographic system was determined by injecting a 1% test sample solution, in triplicate, at the beginning and at the end of the chromatographic run.

A coefficient of variation (CV) of $\leq 3\%$ in peak area and a difference of $\pm 10\%$ between the average response for the standards (test sample solution) injected at the end and throughout the run, compared with those injected at the beginning were considered acceptable.

Page 13 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

6.8. Data Collection and Statistical Methods

Data collection was performed using Empower 2 (Build 2154 FR2 SPB), from Waters Corporation.

Statistical analyses included linear regression with no weighting factor, using Empower 2 and descriptive statistics such as arithmetic means and standard deviations, using Microsoft Excel (Version 2000/2003).

Tables were prepared from retrospective manual entry on computer (Microsoft Word, Version 2000/2003). The data presented in the table were calculated from rounded values, as per the raw data rounding procedure, and may not be accurately reproduced from the individual data presented.

6.9. Quality Assurance

The Quality Assurance department of PCS-MTL undertook and documented inspections and process audits of the analytical laboratory during the study conduct, and audited the study report as well as the raw data. The Quality Assurance Statement is presented on page 7.

6.10. Archives

All raw data and documents generated at PCS-MTL during this study, and the final report will be transferred to the scientific archives of PCS-MTL for a period of approximately one year from finalization. Storage details following the one year archive period will be documented in the raw data as per study protocol.

7. RESULTS AND DISCUSSION

Representative chromatograms are presented in Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6.

7.1. System Suitability

The CV for the calibration standards was $\leq 3\%$, and the difference between the average response for the standards injected at the end and throughout the run, compared with those injected at the beginning was within $\pm 10\%$. Acceptance criteria with respect to system suitability were met.

For bulk substance stability, the CV for 1% test sample solution was \leq 3%, and the difference between the average responses for the test sample solutions injected at the end, compared with those injected at the beginning was within $\pm 10\%$.

Page 14 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

7.2. Study Samples

All study samples analyzed for concentration were within the mean acceptance criteria of $\pm 10\%$ of their target values. For homogeneity, the relative standard deviation of the grand mean for all locations was $\leq 5\%$ for all groups.

Study sample results are expressed using a purity of 95% and an effective component in water of 50% (w/v) for a total purity of 47.5%.

Results are presented in Table 1 and Table 2.

7.3. Bulk Test Substance Stability

Stability of the bulk substance was assessed and the purity was determined to be 100%. The difference between the purity value obtained, when compared with the purity value indicated on the Certificate of Analysis was 7.1%. Results are presented in Table 3.

8. CONCLUSION

The dose formulations were within specification. Homogeneity results show that the formulation technique used produces homogenous preparations. In addition, purity and stability of the bulk reference material collected on the last day of the study was assessed and results were deemed acceptable.

Page 15 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

 Table 1
 Study Samples - Concentration and Homogeneity

Sampling date	Group	Nominal concentration (mg/mL)	Sampling location	Measured concentration (mg/mL)	Percent of nominal	Homogeneity (RSD)
		0	Тор	< LLOQ	-	
				< LLOQ	-	
	1		Middle	< LLOQ	-	
				< LLOQ	-	-
			Bottom	< LLOQ	-	
				< LLOQ	-	
			Mean	< LLOQ	-	
			Тор	20.9	104	
			Тор	20.2	101	
	2	20	Middle	20.3	102	
			Middle	20.5	102	1.2
			Bottom	20.3	102	
				20.1	101	
05 Oct 2010			Mean	20.4	102	
03 OCt 2010	3	70	Тор	70.6	101	1.1
				68.9	98.5	
			Middle	68.5	97.8	
				70.1	100	
			Bottom	69.2	99.1	
				69.4	99.3	
			Mean	69.5	99.3	
	4	100	Тор	98.4	98.4	0.7
				100	100	
			Middle	99.5	99.4	
				98.6	98.6	
			Bottom	99.1	99.1	
				99.8	99.8	
			Mean	99.3	99.3	

LLOQ - lower limit of quantitation (0.500 mg/mL)

Testing Facility Study No. 20005045

Page 16 Test Site Ref. No. 211271

 Table 2
 Study Samples - Concentration

Sampling date	Group identification/ level	Nominal concentration (mg/mL)	Measured concentration (mg/mL)	Mean measured concentration (mg/mL)	Percent of nominal	Mean percent of nominal
	1/Mid	0	< LLOQ	< LLOQ	-	-
	1/1/111		< LLOQ		-	
	2/Mid	20	20.5	20.4	102	102
00 0 0 4 2010	2/1 VII Q		20.4		102	
09 Oct 2010	3/Mid	70	70.1	70.0	100	100
			69.9		100	
	4/Mid	100	101	101	101	101
		100	101		101	
16 Oct 2010	1/Mid	0	< LLOQ	< LLOQ	-	-
			< LLOQ		-	
	2/Mid 20	20	20.3	20.2	101	101
		20	20.1		100	
	3/Mid 70	70	70.4	70.3	101	100
		/0	70.2		100	
	4/Mid 100	100	100	100	100	100
		100	100		100	

LLOQ - lower limit of quantitation (0.500 mg/mL)

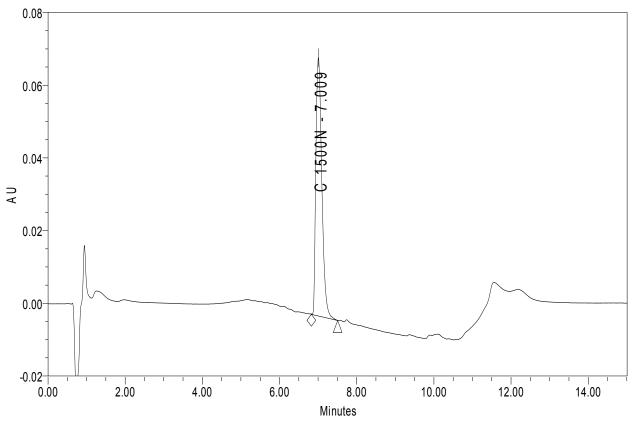

Page 17 Test Site Ref. No. 211271

Table 3 Bulk Substance Stability

Bulk substance assessed purity (%)	Bulk substance impurity (%)	Bulk material CoA purity (%)	Bulk material CoA total impurity (%)	Percent difference ^a
100	0.0	93.4	6.6	7.1

a Assessed purity is compared with the purity stated on the CoA

Figure 1 Representative Standard Chromatogram (Nominal Concentration: 190 µg/mL)

—— SampleName STD G; Injection Id 2015; Result Id 2194

Figure 2 Representative Blank Vehicle

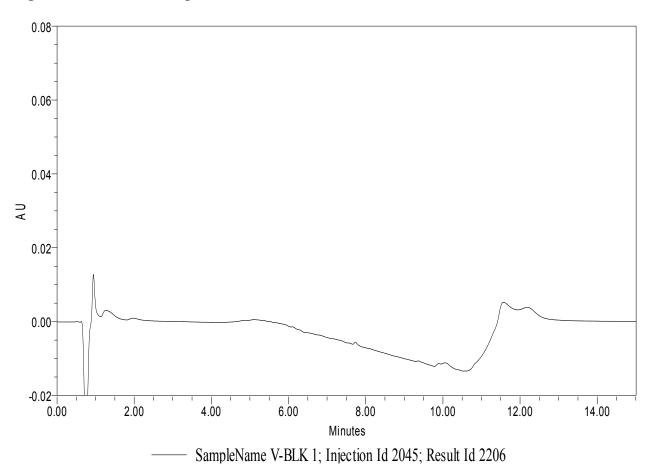


Figure 3 Representative Study Sample Chromatogram (Group 4, Mid Sampling Date: 16 October 2010, Nominal Concentration: 100 mg/mL; Nominal Injected Concentration: 200 μg/mL)

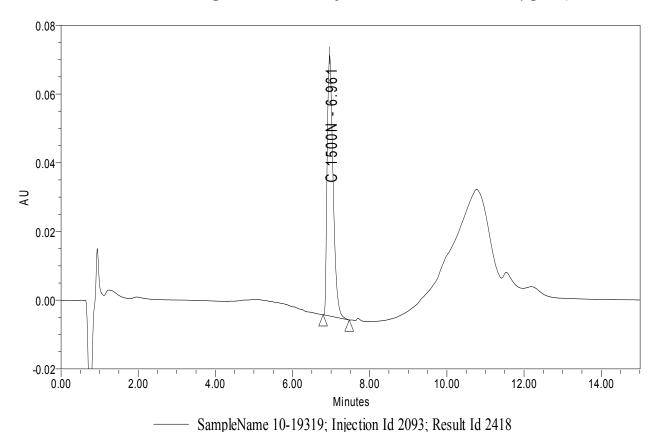
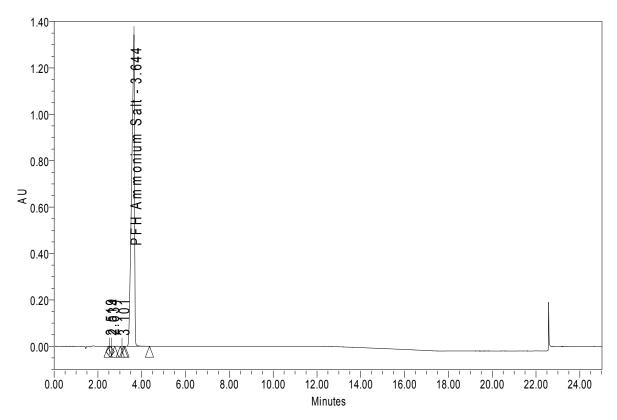
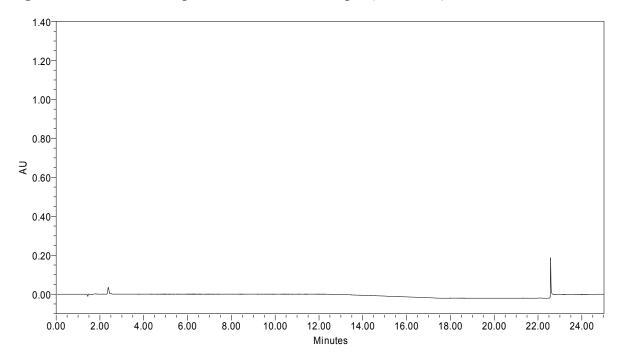



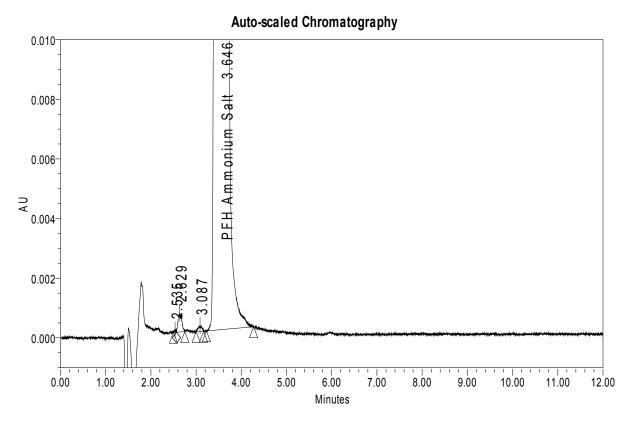
Figure 4 Representative Bulk Substance Sample (Full Scale)


Peak Results

	Name	SMP_Name	Injection Id	Result Id	% Area	Area	RT
1		10-20648A	2284	2336	0.01	752	2.519
2		10-20648A	2284	2336	0.03	3636	2.634
3		10-20648A	2284	2336	0.01	1046	3.101
4	PFH Ammonium Salt	10-20648A	2284	2336	99.96	12171372	3.644

Page 22 Test Site Ref. No. 211271

Testing Facility Study No. 20005045


Figure 5 Representative Blank Sample (Full Scale)

Peak Results

		Name	SMP_Name	Injection Id	Result Id	% Area	Area	RT
Ī	1	PFH Ammonium Salt	BLK	2270	2339			3.570

Figure 6 Representative Bulk Substance Sample (Auto-scaled)

Peak Results

	Name	SMP_Name	Injection Id	Result Id	% Area	Area	RT
1		10-20648B	2288	2335	0.00	197	2.535
2		10-20648B	2288	2335	0.03	3552	2.629
3		10-20648B	2288	2335	0.01	1083	3.087
4	PFH Ammonium Salt	10-20648B	2288	2335	99.96	12241385	3.646

Page 24 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

Appendix 1

Certificate of Analysis

Page 25 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

Certificate of Analysis

Daikin Industries,LTD.

Name of Sample

PFH Ammonium Salt (C-1500N)

Lot.

Date of Analysis

May 14, 2009

Purify

47.4% (Effective component in Water)

*50.8*0.934%=47.4%

COMPOSITION

identity			Conc.
#1	Ammonium Perfluorohexanoate CAS RN. 21615-47-4		93.4%
#2	Unknown		6.6%
		T-4-I	1000/

Analysis system (HPLC)

Equipment

: Waters Alliance2695

Detector

: Waters 2487UV

Detection wavelength

: 210nm

Analysis condition

Column Temp.

: TOSOH TSKGel ODS120T 4.6mm×150mm

:40 °C

Mobile phase

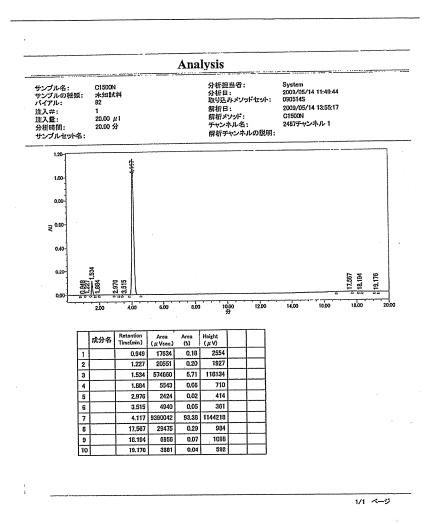
: A=acetonitrile , B=Solution of 0.6% perchloric acid in water

Gradient

: $A:B=50:50(mass\%) (0-10min.) \rightarrow 90:10(mass\%) (15-20min.)$

Injection volume

: 20µL


Injection Concentration : 1% (dilute 50times with water)

Chemical R&D Center Unidyne Group Senior Researcher

SIGNATURE

DATE: May 18, 2009

Page 26 Test Site Ref. No. 211271

Page 27 Test Site Ref. No. 211271

Testing Facility Study No. 20005045

Amended expire date

Test Substance

: PFH Ammonium Salt (Ammonium salt of Perfluorinated

Hexanoic Acid). Ammonium Perfluorohexanoate's

CAS number

: 21615-47-4.

Name of test substance

: C1500N

Lot No.

: 7005

EXPIRY DATE

: 31 July 2012

Sep 16, 2010
Date

Daikin Industries, LTD
Chemical Division

APPENDIX 5 - PHARMACOKINETIC REPORTS

FINAL REPORT

Test Site Ref. No. 142577 Testing Facility Study No. 20005045

Determination of Perfluorohexanoic Acid (PFH) in Mouse Serum (CD1) by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) in Support of Toxicology Study No. 20005045

TEST SITE:

Charles River Laboratories Preclinical Services Montreal 22022 Transcanadienne Senneville, Quebec Canada H9X 3R3

TESTING FACILITY:

Charles River Laboratories Preclinical Services 905 Sheehy Drive, Building A Horsham, PA 19044 United States

SPONSOR:

Daikin Industries, LTD
Chemical Division
Umeda Center Building
4-12 Nakazaki-Nishi, 2-chrome
Kita-ku, Osaka 530-8323
Japan

10 June 2011

Page 1 of 28

TABLE OF CONTENTS

LIS	ST OF TABLES	3
LIS	ST OF FIGURES	4
LIS	ST OF APPENDICES	5
1.	COMPLIANCE STATEMENT	
	QUALITY ASSURANCE STATEMENT	
2.		
3.	SUMMARY	
4.	INTRODUCTION	9
5.	REFERENCE STANDARD, INTERNAL STANDARD AND BLANK MATRIX	9
	5.1. Reference Standard	
	5.2. Internal Standard	9
	5.3. Blank Matrix	10
6.	EXPERIMENTAL PROCEDURES	10
	6.1. Calibration Standards	10
	6.2. Quality Control Samples	10
	6.3. Study Samples	
	6.4. Analysis	
	6.4.1. Liquid Chromatography	
	6.4.2. MS/MS Conditions	
	6.5. System Suitability	
	6.7. Method Validation	
	6.8. Quality Assurance	
	6.9. Archives	
7.	RESULTS AND DISCUSSION	
1.	7.1. System Suitability	
	7.2. Study Samples	

Page 3 Test Site Ref. No. 142577

LIST OF TABLES

Table 1	Serum Concentrations of Perfluorohexanoic Acid (PFH)	. 14
Table 2	Calibration Standard Statistics	. 15
Table 3	Quality Control Sample Statistics	. 16

Page 4 Test Site Ref. No. 142577

LIST OF FIGURES

Figure 1	Representative Calibration Line (Theoretical Concentration 1.00 to 1000 μg/mL)	17
Figure 2	Representative LLOQ Standard Chromatogram (Theoretical Concentration 1.00 µg/mL).	18
Figure 3	Representative ULOQ Standard Chromatogram (Theoretical Concentration 1000 μg/mL)	19
Figure 4	Representative Double Blank Chromatogram	20
Figure 5	Representative Sample Chromatogram (Group 1, Animal No. 9002)	21
Figure 6	Representative Sample Chromatogram (Group 2, Animal No. 9103)	22
Figure 7	Representative Sample Chromatogram (Group 3, Animal No. 9124)	23
Figure 8	Representative Sample Chromatogram (Group 4, Animal No. 9067)	24

Testing Facility	Study No.	20005045

Page 5 Test Site Ref. No. 142577

LIST OF APPENDICES

Appendix 1	Certificates of Analysis	25
------------	--------------------------	----

Page 6 Test Site Ref. No. 142577

1. COMPLIANCE STATEMENT

This phase of the study, conducted at Charles River Laboratories Preclinical Services Montreal (PCS-MTL), 22022 Transcanadienne, Senneville, Quebec, Canada, H9X 3R3, complied with the Organization for Economic Co-operation and Development (OECD) Principles of GLP (ENV/MC/CHEM(98)17.

10 5 m 2011 Date

Bioanalytical Principal Investigator Research Scientist, Bioanalysis Laboratory Sciences Charles River Laboratories

Page 7 Test Site Ref. No. 142577

2. QUALITY ASSURANCE STATEMENT

In compliance with the Good Laboratory Practice Regulations, Reference No. 142577 has been audited. The data presented in the final report accurately represent the data collected during the conduct of the study.

Phase or Segment Audited	Date of Inspection	Dates of Reports to Test Site Management and Principal Investigator	Dates of Reports to Testing Facility Management/ Study Director & Lead QA
Protocol Review	07 October 2010	07 October 2010	25 February 2011
Bioanalysis Data Sample Management/Shipping Records - Data Review SOP Review - Report Review Bioanalysis Report Tabulation Bioanalysis Matrix Report	03 February 2011 to 14 February 2011	14 February 2011	25 February 2011
Final Report Review	27 May 2011 to 31 May 2011	31 May 2011	08 June 2011

In addition to the above-mentioned inspections, process based and/or routine facility inspections were also conducted during the course of this study. Any findings specific to this study from these inspections are reported with this QA Statement. All other observations and the dates of reports to PCS-MTL Management are retained on file according to PCS-MTL Quality Assurance Standard Operating Procedures.

Date Date

Inspector Quality Assurance Charles River Laboratories

Page 8 Test Site Ref. No. 142577

3. SUMMARY

The concentrations of Perfluorohexanoic Acid (PFH) in Mouse Serum samples in support of Testing Facility Study No. 20005045, entitled "Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of perfluorinated Hexanoic Acid) in Mice", were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Results for all samples analyzed are presented in this report.

Page 9

Testing Facility Study No. 20005045

Test Site Ref. No. 142577

4. INTRODUCTION

The concentrations of Perfluorohexanoic Acid (PFH) in Mouse Serum samples were determined by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The method of analysis, documented in PCS-MTL analytical procedure AP.142577.SE.01, was previously validated (Study No. 141837).

For the work detailed in this report, the experimental start date was 23 December 2010 and the experimental end date was 03 January 2011. The study completion date is the signature date of the final report.

5. REFERENCE STANDARD, INTERNAL STANDARD AND BLANK MATRIX

5.1. Reference Standard

Identity: PFH ammonium salt (50% aqueous solution: 474 mg/mL)

(also known as perfluorohexanoic acid)

Lot number: 7005

Purity: 93.4% (correction factor: 0.474, corrected for effective component

in solution)

Expiry date: 31 July 2012

Storage conditions: In a controlled temperature area set at 21°C

5.2. Internal Standard

Identity: Perfluoro-n-[1, 2-¹³C₂] hexanoic acid (also known as

PFHxA-1, $2^{-13}C_2$)

Lot number: MPFHxA0910

Purity: > 98% (50 μg/mL certified solution)

Expiry date: 23 September 2013

Storage condition: In a refrigerator set to maintain 4°C, dark

The reference standard characterization was the responsibility of the Sponsor who provided Certificates of Analysis (Appendix 1) for inclusion in this study report.

Details of identity, purity, storage conditions and handling precautions were supplied by the Sponsor. Remaining reference standard was stored at PCS-MTL for use on subsequent studies for the Sponsor.

Page 10 Test Site Ref. No. 142577

Testing Facility Study No. 20005045

5.3. Blank Matrix

Identity: Mouse serum Species: Mus musculus

Strain: CD1

6. EXPERIMENTAL PROCEDURES

6.1. Calibration Standards

Calibration standards of reference standard were prepared in blank mouse serum covering the theoretical concentration range of 1.00 to 1000 μ g/mL. Calibration standards consisted of blank mouse serum (250 μ L) spiked with appropriate standard working solution (methanol; 5 μ L).

6.2. Quality Control Samples

Quality control (QC) samples of reference standard were prepared in blank mouse serum at theoretical concentrations of 3.00, 60.0 and 700 μ g/mL. QC samples consisted of blank mouse serum (250 μ L) spiked with appropriate QC working solution (methanol; 5 μ L).

6.3. Study Samples

Study samples were received from Charles River Laboratories Preclinical Services (Pennsylvania) and stored frozen in the freezer set to maintain at -80°C prior to analysis.

Remaining unused study samples will be retained at PCS-MTL for approximately 1 year after dispatch of the final report or until authorized to discard by the Study Director.

6.4. Analysis

Single and double blank samples consisted of blank mouse serum (250 μ L) plus methanol (5 μ L). To each standard, QC, single and double blank sample and study samples (10 μ L), acetonitrile (100 μ L) was added and the mixtures vortexed (~30 seconds) and centrifuged (~14000 rpm, ~10 minutes, set at 4°C). An aliquot (10 μ L) of the supernatant was transferred to an appropriately labelled tube containing internal standard (100 ng/mL; 1.0 mL) or for double blank sample an aliquot (10 μ L) of the supernatant was transferred to an appropriately labelled tube containing a solution of water:methanol (30:70, v/v; 1.0 mL) and the mixture vortexed. An aliquot (100 μ L) of the mixture was transferred to a 96-well collection plate containing a solution of water:methanol (30:70, v/v; 900 μ L) and the extracts vortexed (~30 seconds).

Page 11

Testing Facility Study No. 20005045

Test Site Ref. No. 142577

The standard, QC, blank and study sample extracts were analyzed by LC-MS/MS using the following conditions:

6.4.1. Liquid Chromatography

HPLC system: Agilent Technologies 1100 series binary pump and

degasser, and Shimadzu SIL-HTC autosampler

Column: Waters XBridge Shield RP18, 3.5 µm

(50 x 4.6 mm id)

Column temperature: Set at 50°C

Mobile phase gradient elution: Eluent A: 2mM ammonium acetate, pH 4.0

Eluent B: methanol:2mM ammonium acetate

(pH 4.0); 80:20, v/v

Time (min)	%B
0.0	70
3.5	70

Flow rate: 1.0 mL/min

Injection volume: 5 µL

Autosampler tray temperature: Set at 4°C

Autosampler needle wash: Water:methanol:acetic acid; 20:80:1, v/v/v

6.4.2. MS/MS Conditions

MS system: AB Sciex API 4000

Data capture system: AB Sciex Analyst, Version 1.4.1

Ionization mode: Negative electrospray ionization (ESI)
Scan type: Multiple reaction monitoring (MRM)

Resolution: Unit/unit

Ion spray voltage: -4500 V

Ion source gas 1 (zero air): 60 psi

Ion source gas 2 (zero air): 60 psi

Curtain gas: 30 psi

Collision activated dissociation gas (CAD): 6 dacs

Temperature: 600°C

Page 12 Test Site Ref. No. 142577

Testing Facility Study No. 20005045

Monitoring ions and respective parameters:

Name	Q1 Mass	Q3 Mass	Retention Time (min)	Scan Time (msec)	DP (V)	EP (V)	CE (eV)	CXP (V)
Perfluorohexanoic acid	313.0	268.8	~2.3	200	-40	-5	-13	-15
PFHxA-1,2- ¹³ C2	315.0	270.0	~2.3	100	-40	-5	-13	-15

Some conditions may vary

6.5. System Suitability

The reproducibility of the chromatographic system was determined by injecting an extracted calibration standard, at least in triplicate, at the beginning of the chromatographic run. To assess system stability, QC samples were injected at the end of each run.

A coefficient of variation (CV) of \leq 5% with respect to peak area ratio for an extracted calibration standard injected at the beginning of the run, and QC samples injected at the end of each run meeting acceptance criteria, were considered acceptable.

6.6. Data Collection and Statistical Methods

Data collection was performed using Analyst, Version 1.4.1, from AB Sciex.

Statistical analyses included quadratic regression with 1/concentration² weighting and descriptive statistics such as arithmetic means and standard deviations, accuracy and precision using Watson Laboratory Information Management System (LIMS) (Version 7.2.0.02) and Microsoft Excel (Version 2000/2003).

Tables were prepared from retrospective manual entry on computer (Microsoft Word, Version 2000/2003).

6.7. Method Validation

The analytical method was previously validated (Study No. 141837) with respect to selectivity, linearity, lower limit of quantitation (LLOQ), carry-over, intra- and inter-assay precision and accuracy, stock solution stability, injection medium integrity, short-term matrix stability, freeze-thaw matrix stability, long-term matrix stability and dilution integrity.

Page 13 Test Site Ref. No. 142577

Testing Facility Study No. 20005045

6.8. Quality Assurance

The Quality Assurance department of PCS-MTL undertook and documented inspections and process audits of the laboratories in which this study was performed at PCS-MTL, and audited the study report as well as the raw data. The Quality Assurance Statement is presented on page 7.

6.9. Archives

All raw data and documents generated at PCS-MTL during this study, together with the final phase report will be transferred to the scientific archives of PCS-MTL for a period of approximately 1 year from finalization.

7. RESULTS AND DISCUSSION

A representative calibration line is presented in Figure 1 and representative chromatograms are presented in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8.

7.1. System Suitability

Acceptance criteria with respect to system suitability were met on all occasions.

7.2. Study Samples

Results for the study samples are presented in Table 1. The calibration standard and quality control sample statistics are presented in Table 2 and Table 3, respectively.

There were no re-assay samples in the study.

Page 14 Test Site Ref. No. 142577

Table 1 Serum Concentrations of Perfluorohexanoic Acid (PFH)

Subject	Gender/Generation	Subject Group	Study Day	Nominal Time	Concentration (µg/mL)
9002	Male / F1	1	42	OD42 Terminal	< LLOQ
9003	Male / F1	1	42	OD42 Terminal	< LLOQ
9004	Male / F1	1	42	OD42 Terminal	< LLOQ
9005	Male / F1	1	42	OD42 Terminal	< LLOQ
9006	Male / F1	1	42	OD42 Terminal	< LLOQ
9082	Female / F1	1	42	OD42 Terminal	< LLOQ
9083	Female / F1	1	42	OD42 Terminal	< LLOQ
9084	Female / F1	1	42	OD42 Terminal	< LLOQ
9085	Female / F1	1	42	OD42 Terminal	< LLOQ
9086	Female / F1	1	42	OD42 Terminal	< LLOQ
9022	Male / F1	2	42	OD42 Terminal	< LLOQ
9023	Male / F1	2	42	OD42 Terminal	< LLOQ
9024	Male / F1	2	42	OD42 Terminal	< LLOQ
9025	Male / F1	2	42	OD42 Terminal	< LLOQ
9026	Male / F1	2	42	OD42 Terminal	< LLOQ
9103	Female / F1	2	42	OD42 Terminal	< LLOQ
9104	Female / F1	2	42	OD42 Terminal	< LLOQ
9105	Female / F1	2	42	OD42 Terminal	< LLOQ
9106	Female / F1	2	42	OD42 Terminal	< LLOQ
9107	Female / F1	2	42	OD42 Terminal	< LLOQ
9043	Male / F1	3	42	OD42 Terminal	< LLOQ
9044	Male / F1	3	42	OD42 Terminal	< LLOQ
9045	Male / F1	3	42	OD42 Terminal	< LLOQ
9046	Male / F1	3	42	OD42 Terminal	< LLOQ
9047	Male / F1	3	42	OD42 Terminal	< LLOQ
9124	Female / F1	3	42	OD42 Terminal	< LLOQ
9125	Female / F1	3	42	OD42 Terminal	< LLOQ
9126	Female / F1	3	42	OD42 Terminal	< LLOQ
9127	Female / F1	3	42	OD42 Terminal	< LLOQ
9128	Female / F1	3	42	OD42 Terminal	< LLOQ
9063	Male / F1	4	42	OD42 Terminal	< LLOQ
9064	Male / F1	4	42	OD42 Terminal	< LLOQ
9065	Male / F1	4	42	OD42 Terminal	< LLOQ
9066	Male / F1	4	42	OD42 Terminal	< LLOQ
9067	Male / F1	4	42	OD42 Terminal	< LLOQ
9143	Female / F1	4	42	OD42 Terminal	< LLOQ
9144	Female / F1	4	42	OD42 Terminal	< LLOQ
9145	Female / F1	4	42	OD42 Terminal	< LLOQ
9146	Female / F1	4	42	OD42 Terminal	< LLOQ
9147	Female / F1	4	42	OD42 Terminal	< LLOQ

LLOQ – lower limit of quantitation (theoretical concentration 1.00 μg/mL)

Page 15 Test Site Ref. No. 142577

 Table 2
 Calibration Standard Statistics

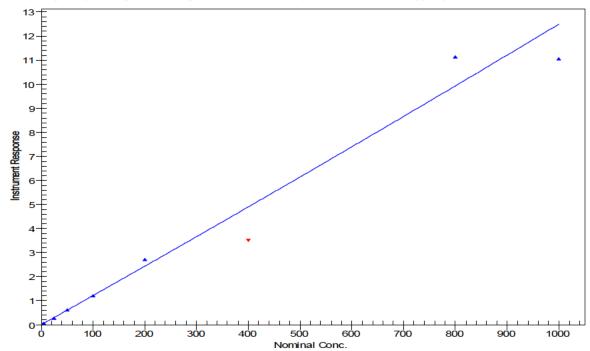
	Concentration (μg/mL)									
Analytical Run ^a	1.00	2.00	5.00	25.0	50.0	100	200	400	800	1000
2	1.01	2.01	4.78	22.3	51.1	99.4	223	288 ^b	893	887
Mean	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
S.D.	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
% CV	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
% Bias	0.9	0.5	-4.4	-10.8	2.1	-0.6	11.7	NC	11.7	-11.3
n	1	1	1	1	1	1	1	0	1	1

a = Run 01 was a qualification batch, no study samples were analyzed, data not included in summary.

b = Outside of acceptance criteria

NC - Not calculated for sample set where $n \! < \! 3$

Page 16 Test Site Ref. No. 142577


 Table 3
 Quality Control Sample Statistics

A 1 1 D 4	Concentration (μg/mL)					
Analytical Run ^a	3.00	60.0	700			
2	3.08	52.3	649			
	2.93	55.1	670			
	3.09	53.9	623			
	2.96	55.5	684			
Mean	3.016	54.18	656.7			
S.D.	0.0785	1.447	26.56			
% CV	2.6	2.7	4.0			
% bias	0.5	-9.7	-6.2			
n	4	4	4			

a = Run 01 was a qualification batch, no study samples were analyzed, data not included in statistical calculation.

Figure 1 Representative Calibration Line (Theoretical Concentration 1.00 to 1000 µg/mL)

Analytical Run 2 analyzed on 03-Jan-2011 Calibration Standards for Perfluorohexanoic acid (µg/mL) Regression Method = QUADRATIC - Weighting Factor = 1/X**2 Response = A * (Conc**2) + B * Conc + C A = 0.000000424 B = 0.012081319 C = -0.00087123 R-Squared = 0.9914 (Study Sample analysis for PFH (perfluorohexanoic acid) in mouse serum to support protocol 20005045)

Page 18 Test Site Ref. No. 142577

Figure 2 Representative LLOQ Standard Chromatogram (Theoretical Concentration 1.00 μg/mL)

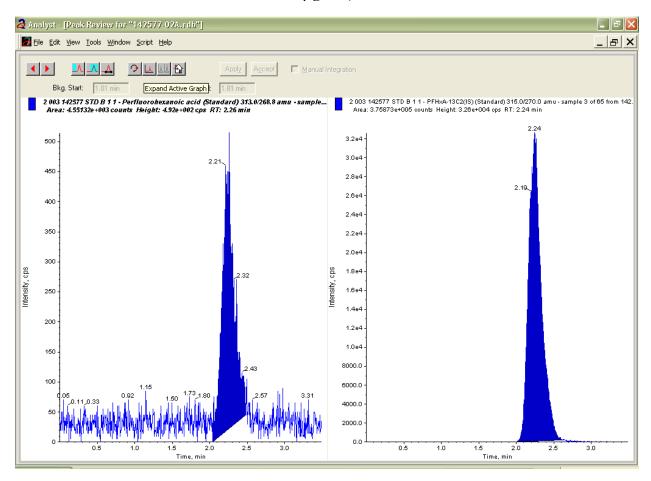


Figure 3 Representative ULOQ Standard Chromatogram (Theoretical Concentration 1000 µg/mL)

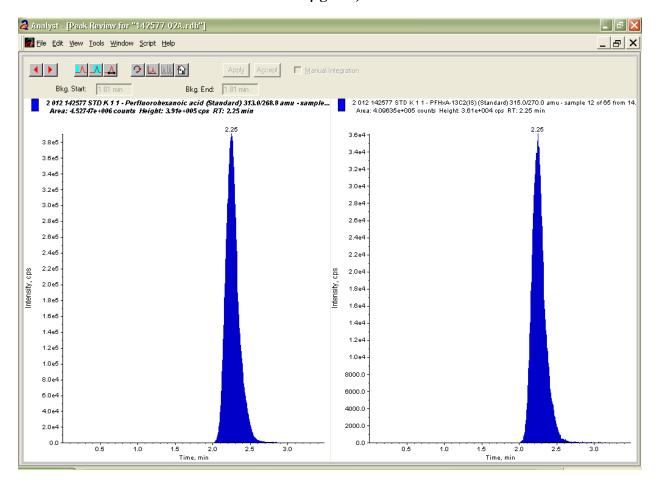


Figure 4 Representative Double Blank Chromatogram

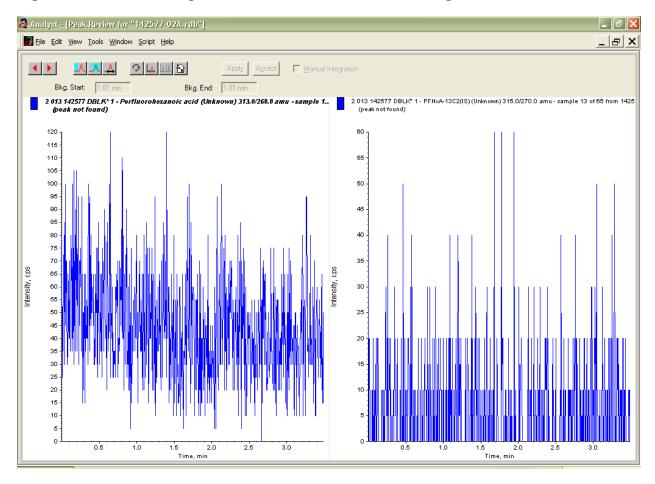


Figure 5 Representative Sample Chromatogram (Group 1, Animal No. 9002)

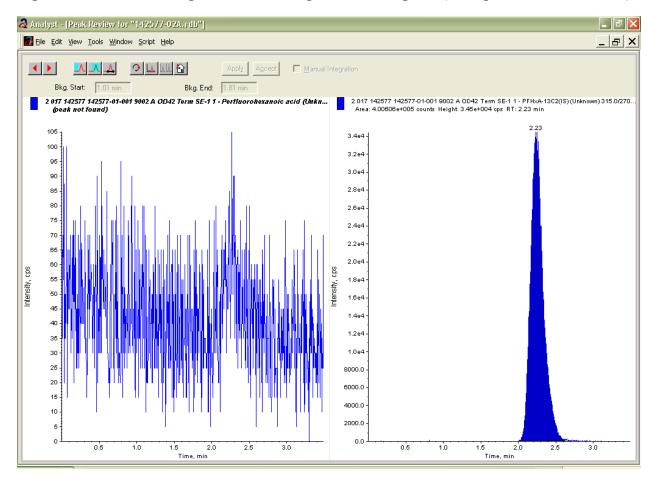


Figure 6 Representative Sample Chromatogram (Group 2, Animal No. 9103)

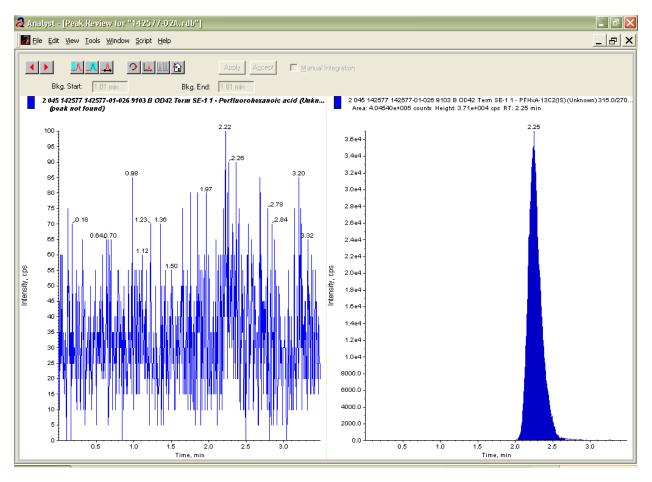


Figure 7 Representative Sample Chromatogram (Group 3, Animal No. 9124)

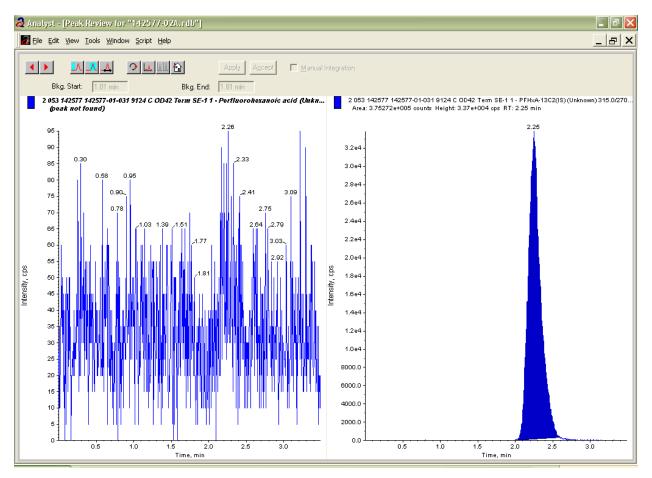
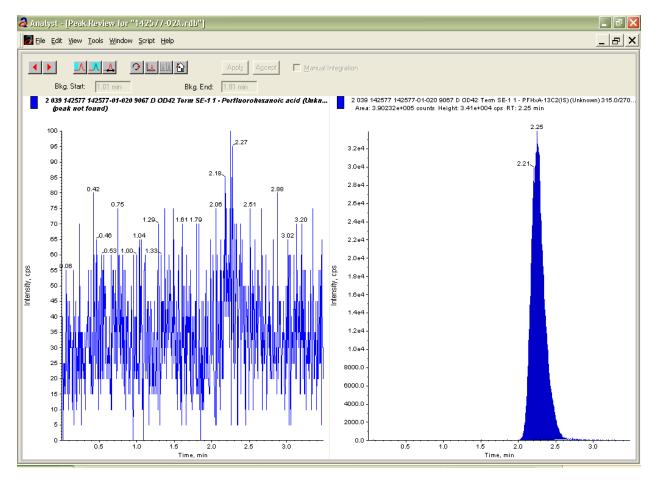



Figure 8 Representative Sample Chromatogram (Group 4, Animal No. 9067)

Page 25 Test Site Ref. No. 142577

Appendix 1

Certificates of Analysis

Certificate of Analysis

Daikin Industries,LTD.

PFH Ammonium Salt (C-1500N) Name of Sample

Lot.

May 14, 2009 Date of Analysis

Purify 47.4% (Effective component in Water)

*50.8*0.934%=47.4%

COMPOSITION

identity		Conc.
#1	Ammonium Perfluorohexanoate CAS RN. 21615-47-4	93.4%
#2	Unknown	6.6%
	Total	100%

Analysis system (HPLC)

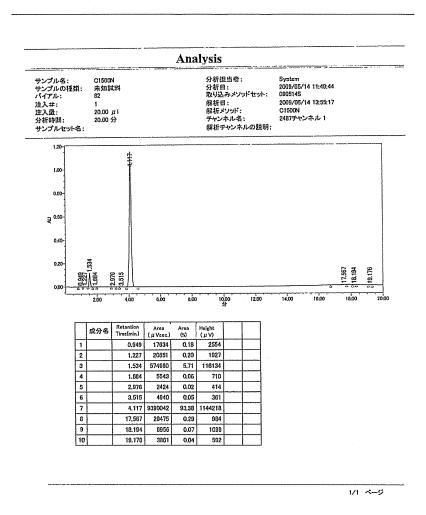
: Waters Alliance2695 Equipment Detector : Waters 2487UV

Detection wavelength : 210nm

Analysis condition

: TOSOH TSKGel ODS120T 4.6mm×150mm Column

Temp. :40 °C


: A=acetonitrile , B=Solution of 0.6% perchloric acid in water Mobile phase : A:B=50:50(mass%) (0-10min.) → 90:10(mass%) (15-20min.) Gradient

: 20µL Injection volume

Injection Concentration : 1% (dilute 50times with water)

Chemical R&D Center Unidyne Group Senior Researcher

SIGNATURE DATE: May 18, 2009

Page 28 Test Site Ref. No. 142577

Testing Facility Study No. 20005045

Amended expire date

Lot No.

EXPIRY DATE

Test Substance : PFH Ammonium Salt (Ammonium salt of Perfluorinated

Hexanoic Acid). Ammonium Perfluorohexanoate's

CAS number : 21615-47-4.

: 7005

: 31 July 2012

Name of test substance : C1500N

Sep 16, 2010

Date

Daikin Industries, LTD Chemical Division

FINAL REPORT

Test Site Ref. No. 142578 Testing Facility Study No. 20005045

Determination of Perfluorohexanoic Acid (PFH) in Mouse Liver Homogenate (CD1) by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS) in Support of Toxicology Study No. 20005045

TEST SITE:

Charles River Laboratories Preclinical Services Montreal 22022 Transcanadienne Senneville, Quebec Canada H9X 3R3

TESTING FACILITY:

Charles River Laboratories Preclinical Services 905 Sheehy Drive, Building A Horsham, PA 19044 United States

SPONSOR:

Daikin Industries, LTD
Chemical Division
Umeda Center Building
4-12 Nakazaki-Nishi, 2-chrome
Kita-ku, Osaka 530-8323
Japan

10 June 2011

Page 1 of 33

TABLE OF CONTENTS

LIS	ST OF TABLES	3
LIS	ST OF FIGURES	4
LIS	ST OF APPENDICES	5
1.	COMPLIANCE STATEMENT	6
2.	QUALITY ASSURANCE STATEMENT	
3.	SUMMARY	8
4.	INTRODUCTION	9
5.	REFERENCE STANDARD, INTERNAL STANDARD AND BLANK MATRIX	q
	5.1. Reference Standard	
	5.2. Internal Standard	
	5.3. Blank Matrix	
6.	EXPERIMENTAL PROCEDURES	10
	6.1. Blank Liver Homogenate	10
	6.2. Calibration Standards	10
	6.3. Quality Control Samples	10
	6.4. Study Samples	10
	6.5. Analysis	11
	6.5.1. Liquid Chromatography	11
	6.5.2. MS/MS Conditions	12
	6.6. System Suitability	13
	6.7. Data Collection and Statistical Methods	13
	6.8. Method Validation	13
	6.9. Quality Assurance	13
	6.10. Archives	14
7.	RESULTS AND DISCUSSION	14
	7.1. System Suitability	14
	7.2. Study Samples	14

Page 3 Test Site Ref. No. 142578

LIST OF TABLES

Table 1	Group 1 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)	15
Table 2	Group 2 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)	16
Table 3	Group 3 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)	17
Table 4	Group 4 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)	18
Table 5	Calibration Standard Statistics	19
Table 6	Quality Control Sample Statistics	20
Table 7	Study Sample Re-assay History	21

LIST OF FIGURES

Figure 1	Representative Calibration Line (Theoretical Liver Homogenate Concentration 0.0200 to 10.0 μg/mL)	22
Figure 2	Representative LLOQ Standard Chromatogram (Theoretical Concentration in Liver Homogenate 0.0200 µg/mL)	23
Figure 3	Representative ULOQ Standard Chromatogram (Theoretical Concentration in Liver Homogenate 10.0 µg/mL)	24
Figure 4	Representative Double Blank Chromatogram	25
Figure 5	Representative Sample Chromatogram (Group 1, Animal No. 8313)	26
Figure 6	Representative Sample Chromatogram (Group 2, Animal No. 8333)	27
Figure 7	Representative Sample Chromatogram (Group 3, Animal No. 8354)	28
Figure 8	Representative Sample Chromatogram (Group 4, Animal No. 8378)	29

Page 5 Test Site Ref. No. 142578

LIST OF APPENDICES

Appendix 1	Certificates of Analysis	30
------------	--------------------------	----

Page 6 Test Site Ref. No. 142578

1. COMPLIANCE STATEMENT

This phase of the study, conducted at Charles River Laboratories Preclinical Services Montreal (PCS-MTL), 22022 Transcanadienne, Senneville, Quebec, Canada, H9X 3R3, complied with the appropriate Organization for Economic Co-operation and Development (OECD) Principles of GLP (ENV/MC/CHEM(98)17.

10 Jun 2011

Bioanalytical Principal Investigator Research Scientist, Bioanalysis Laboratory Sciences Charles River Laboratories

Page 7 Test Site Ref. No. 142578

Testing Facility Study No. 20005045

2. QUALITY ASSURANCE STATEMENT

In compliance with the Good Laboratory Practice Regulations, Reference No. 142578 has been audited. The data presented in the final report accurately represent the data collected during the conduct of the study.

Phase or Segment Audited	Date of Inspection	Dates of Reports to Test Site Management and Principal Investigator	Dates of Reports to Testing Facility Management/ Study Director & Lead QA
Protocol Review	15 November 2010	15 November 2010	14 February 2011
SOP Review - In-life	15 November 2010	15 November 2010	14 February 2011
Bioanalysis Data Sample Management/Shipping Records - Data Review Bioanalysis Report Tabulation Bioanalysis Matrix Report	03 February 2011 to 04 February 2011	04 February 2011	14 February 2011
Final Report Review	27 May 2011 to 30 May 2011	30 May 2011	08 June 2011

In addition to the above-mentioned inspections, process based and/or routine facility inspections were also conducted during the course of this study. Any findings specific to this study from these inspections are reported with this QA Statement. All other observations and the dates of reports to PCS-MTL Management are retained on file according to PCS-MTL Quality Assurance Standard Operating Procedures.

Date

Inspector
Quality Assurance
Charles River Laboratories

Page 8 Test Site Ref. No. 142578

3. SUMMARY

The concentrations of Perfluorohexanoic Acid (PFH) in Mouse Liver Homogenate samples in support of Testing Facility Study No. 20005045, entitled "Oral (Gavage) Combined Developmental and Perinatal/Postnatal Reproduction Toxicity Study of PFH Ammonium Salt (Ammonium salt of perfluorinated Hexanoic Acid) in Mice", were determined using a previously validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Results for all samples analyzed are presented in this report.

<u>Note:</u> The reference standard is identified as perfluorohexanoic acid in the analytical procedure and bioanalytical phase report. This is the same as the test substance used in the study which is identified in the study protocol as PFH ammonium salt (ammonium salt of perfluorinated hexanoic acid) or ammonium perfluorohexanoate.

Page 9

Testing Facility Study No. 20005045

Test Site Ref. No. 142578

4. INTRODUCTION

The concentrations of Perfluorohexanoic Acid (PFH) in Mouse Liver Homogenate samples were determined by a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The method of analysis, documented in PCS-MTL analytical procedure AP.142578.LI.04, was previously validated (Study No. 141659).

For the work detailed in this report, the experimental start date was 18 November 2010 and the experimental end date was 23 December 2010. The study completion date is the signature date of the final report.

5. REFERENCE STANDARD, INTERNAL STANDARD AND BLANK MATRIX

5.1. Reference Standard

Identity: PFH ammonium salt (50% aqueous solution: 474 mg/mL)

(also known as perfluorohexanoic acid)

Lot number: 7005

Purity: 93.4% (correction factor: 0.474, corrected for effective component

in solution)

Expiry date: 31 July 2012

Storage conditions: In a controlled temperature area set at 21°C

5.2. Internal Standard

Identity: Perfluoro-n-[1, 2-¹³C₂] hexanoic acid (identified in raw data as

PFHxA-1, $2^{-13}C_2$)

Lot number: MPFHxA0809

Purity: > 98% (50 μg/mL certified solution)

Expiry date: 19 August 2012

Storage condition: In a refrigerator set at 4°C, dark

Identity: Perfluoro-n-[1, 2-¹³C₂] hexanoic acid (identified in raw data as

PFHxA-1, $2^{-13}C_2$)

Lot number: MPFHxA0910

Purity: > 98% (50 μg/mL certified solution)

Expiry date: 23 September 2013

Storage condition: In a refrigerator set at 4°C, dark

Page 10

Testing Facility Study No. 20005045

Test Site Ref. No. 142578

The reference standard characterization was the responsibility of the Sponsor who provided Certificates of Analysis (Appendix 1) for inclusion in this study report.

Details of identity, purity, storage conditions and handling precautions were supplied by the Sponsor. Remaining reference standard was stored at PCS-MTL for use on subsequent studies for the Sponsor.

5.3. Blank Matrix

Identity: Mouse liver Species: Mus musculus

Strain: CD1

6. EXPERIMENTAL PROCEDURES

6.1. Blank Liver Homogenate

Blank mouse liver homogenate was prepared by homogenizing blank mouse liver tissue in 0.5 M tetrabutyl ammonium hydrogen sulphate, pH 10.0 with a ratio of 50.0 mg liver tissue to $500 \, \mu L$ of buffer solution.

6.2. Calibration Standards

Calibration standards of reference standard were prepared in blank mouse liver homogenate covering the theoretical concentration range of 0.0200 to $10.0~\mu g/mL$. Calibration standards consisted of blank mouse liver homogenate (500 μL) spiked with appropriate standard working solution (methanol; $5~\mu L$).

6.3. Quality Control Samples

Quality control (QC) samples of reference standard were prepared in blank mouse liver homogenate at theoretical concentrations of 0.0600, 1.50 and 8.00 $\mu g/mL$. QC samples consisted of blank mouse liver homogenate (500 μL) spiked with appropriate QC working solution (methanol; 5 μL).

6.4. Study Samples

Study liver samples were received from Charles River Laboratories Preclinical Services (Pennsylvania) and stored frozen, until sample homogenization, in a freezer set to maintain at -80°C. Once homogenized, study liver sample homogenates were stored frozen in a freezer set to maintain at -80°C prior to analysis. Samples above the ULOQ on initial analysis were diluted with blank mouse liver homogenate prior to re-analysis.

Page 11 Test Site Ref. No. 142578

Testing Facility Study No. 20005045

Remaining unused study sample homogenates will be retained at PCS-MTL for approximately 1 year after dispatch of the final report or until authorized to discard by the Study Director.

6.5. Analysis

Single and double blank samples consisted of blank mouse liver homogenate (500 μ L) plus methanol (5 μ L). To each standard, QC, single blank and study sample homogenate (505 μ L), internal standard (50.0 μ g/mL; 10 μ L) was added, or for double blanks (505 μ L), methanol (10 μ L) was added, and the mixtures vortexed (~60 seconds) and centrifuged (~14000 rpm; ~0°C, ~10 minutes). The samples were stored for at least 1 hour (~4°C) and then centrifuged (~14000 rpm; ~0°C, ~10 minutes). An aliquot (~400 μ L) of the supernatant was loaded, by gravity, onto a 96-well SLE extraction plate (Biotage, 400 mg) and let soaked in the sorbent (~10 minutes). The samples were eluted, by gravity, twice with methyl tertiary butyl ether (850 μ L), evaporated (N₂, top and bottom temperature set at 45°C) and reconstituted (methanol:water; 50:50, v/v; 100 μ L). An aliquot (20 μ L) of the extracts was diluted (methanol:water; 50:50, v/v; 780 μ L) and stored (~4°C) until injection.

The standard, QC, blank and sample extracts were analyzed by LC-MS/MS using the following conditions:

6.5.1. Liquid Chromatography

HPLC system: Agilent Technologies 1100 series binary pump and

degasser, and Shimadzu SIL-HTC autosampler Thermo[®] Aquasil C18, 5 µm (50 x 2.1 mm id)

Column: Thermo[®] Aquasil C18, 5 μm (50 x 2.1 mm id)

Column temperature: Set at 50°C

Mobile phase gradient elution: Eluent A: 2mM ammonium acetate, pH 4.0

Eluent B: methanol:2mM ammonium acetate,

pH 4.0 (80:20, v/v)

Time (minutes)	Flow Rate (mL/min)	%B
0.00	0.5	20
15.0	0.5	100
15.1	1.0	100
18.1	1.0	100
18.2	1.0	20
21.0	1.0	20
21.1	0.5	20
23.0	0.5	20

Page 12

Testing Facility Study No. 20005045

Test Site Ref. No. 142578

Injection volume: $5 \mu L$ Autosampler tray temperature: Set at 4°C

Autosampler needle wash: Water:methanol:acetic acid (20:80:1, v/v/v)

Valco valve:

Time (minutes)	HPLC Column Flow
0.0	Waste
3.0	Mass spectrometer
11.0	Waste

Divert pump mobile phase: Water:methanol:acetic acid (20:80:1, v/v/v)

Divert pump flow rate: 0.5 mL/min

6.5.2. MS/MS Conditions

MS system: AB Sciex API 4000

Data capture system: AB Sciex Analyst, version 1.4.1

Ionization mode: Negative electrospray ionization (ESI)
Scan type: Multiple reaction monitoring (MRM)

Resolution: Unit/unit
Ion spray voltage: -2500V
Ion source gas 1 (zero air): 60 psi
Ion source gas 2 (zero air): 60 psi
Curtain gas: 30 psi
Collision activated dissociation gas (CAD): 6 dacs
Temperature: 600°C

Monitoring ions and respective parameters:

Name	Q1 Mass	Q3 Mass	Retention Time (min)	Scan Time (msec)	DP (V)	EP (V)	CE (eV)	CXP (V)
PFH	313.0	268.8	~6.9	200	-40	-5	-13	-15
PFHxA-1,2- ¹³ C ₂	315.0	270.0	~6.9	100	-40	-5	-13	-15

Some conditions may vary and are documented in the raw data

Page 13 Test Site Ref. No. 142578

Testing Facility Study No. 20005045

6.6. System Suitability

The reproducibility of the chromatographic system was determined by injecting an extracted calibration standard, at least in triplicate, at the beginning of the chromatographic run. To assess system stability, QC samples were injected at the end of each run.

A coefficient of variation (CV) of \leq 5% with respect to peak area ratio for an extracted calibration standard injected at the beginning of the run, and QC samples injected at the end of each run meeting acceptance criteria, were considered acceptable.

6.7. Data Collection and Statistical Methods

Data collection was performed using Analyst, version 1.4.1, from AB Sciex.

Statistical analyses included quadratic regression with 1/concentration² weighting and descriptive statistics such as arithmetic means and standard deviations, accuracy and precision using Watson Laboratory Information Management System (LIMS) (version 7.2.0.02) and Microsoft Excel (version 2003).

Tables were prepared from retrospective manual entry on computer (Microsoft Word, version 2003).

6.8. Method Validation

The analytical method was previously validated (Study No. 141659) with respect to selectivity, linearity, lower limit of quantitation (LLOQ), carry-over, intra- and inter-assay precision and accuracy, stock solution stability, injection medium integrity, short-term matrix stability, freeze-thaw matrix stability, long-term matrix stability and dilution integrity. Stock solution stability was also performed under validation Study No. 141658 and validation Study No. 141837.

6.9. Quality Assurance

The Quality Assurance department of PCS-MTL undertook and documented inspections and process audits of the laboratories in which this study was performed at PCS-MTL, and audited the study report as well as the raw data. The Quality Assurance Statement is presented on page 7.

Page 14 Test Site Ref. No. 142578

Testing Facility Study No. 20005045

6.10. Archives

All raw data and documents generated at PCS-MTL during this study, together with the final phase report will be transferred to the scientific archives of PCS-MTL for a period of approximately 1 year from finalization. Storage details following the 1 year archive period will be documented in the raw data.

7. RESULTS AND DISCUSSION

A representative calibration line is presented in Figure 1 and representative chromatograms are presented in Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8.

7.1. System Suitability

Acceptance criteria with respect to system suitability were met on all occasions.

7.2. Study Samples

Results for the study samples are presented in Table 1, Table 2, Table 3 and Table 4. The calibration standard and quality control sample statistics are presented in Table 5 and Table 6, respectively. The study sample re-assay history results are presented in Table 7.

Sample "Animal No. 8316" was initially analyzed in run 02 which had concentration above the lower limit of detection. This was considered an anomalous sample value as the sample was from a control dosing group and was not expected to have quantifiable concentration. The sample was repeated in duplicate in run 04. Both repeated values were within 20% of each other and the initial value. The initial value is reported in the table. The impact of this anomalous sample value will be assessed in the final report of the study.

Page 15 Test Site Ref. No. 142578

Table 1 Group 1 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)

Subject	Subject Group	Gender/Generation	Liver Homogenate Concentration (µg/mL) ^a
8311	1	Female / F0	< LLOQ
8312	1	Female / F0	< LLOQ
8313	1	Female / F0	< LLOQ
8314	1	Female / F0	< LLOQ
8315	1	Female / F0	< LLOQ
8316	1	Female / F0	0.118
8317	1	Female / F0	< LLOQ
8318	1	Female / F0	< LLOQ
8328	1	Female / F0	< LLOQ
8329	1	Female / F0	< LLOQ
9002	1	Male / F1	< LLOQ
9003	1	Male / F1	< LLOQ
9004	1	Male / F1	< LLOQ
9005	1	Male / F1	< LLOQ
9006	1	Male / F1	< LLOQ
9082	1	Female / F1	< LLOQ
9083	1	Female / F1	< LLOQ
9084	1	Female / F1	< LLOQ
9085	1	Female / F1	< LLOQ
9086	1	Female / F1	<lloq< td=""></lloq<>

LLOQ - lower limit of quantitation (theoretical concentration 0.0200 µg/mL liver homogenate)

 $a = 1.00 \mu g/mL$ of PFH in liver homogenate is equivalent to 10.0 $\mu g/mL$ of PFH in liver sample

Page 16
Testing Facility Study No. 20005045
Test Site Ref. No. 142578

Table 2 Group 2 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)

Subject	Subject Group	Gender/Generation	Liver Homogenate Concentration (µg/mL) ^a
8331	2	Female / F0	< LLOQ
8332	2	Female / F0	< LLOQ
8333	2	Female / F0	< LLOQ
8334	2	Female / F0	< LLOQ
8335	2	Female / F0	< LLOQ
8336	2	Female / F0	< LLOQ
8343	2	Female / F0	< LLOQ
8344	2	Female / F0	< LLOQ
8345	2	Female / F0	< LLOQ
8346	2	Female / F0	< LLOQ
8347	2	Female / F0	< LLOQ
8348	2	Female / F0	< LLOQ
9022	2	Male / F1	< LLOQ
9023	2	Male / F1	< LLOQ
9024	2	Male / F1	< LLOQ
9025	2	Male / F1	< LLOQ
9026	2	Male / F1	< LLOQ
9103	2	Female / F1	< LLOQ
9104	2	Female / F1	< LLOQ
9105	2	Female / F1	< LLOQ
9106	2	Female / F1	< LLOQ
9107	2	Female / F1	< LLOQ

LLOQ - lower limit of quantitation (theoretical concentration 0.0200 $\mu\text{g/mL}$ liver homogenate)

 $a = 1.00 \mu g/mL$ of PFH in liver homogenate is equivalent to 10.0 $\mu g/mL$ of PFH in liver sample

Page 17 Test Site Ref. No. 142578

Table 3 Group 3 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)

Subject	Subject Group	Gender/Generation	Liver Homogenate Concentration (µg/mL) ^a
8351	3	Female / F0	< LLOQ
8352	3	Female / F0	< LLOQ
8353	3	Female / F0	< LLOQ
8354	3	Female / F0	0.0213
8355	3	Female / F0	< LLOQ
8356	3	Female / F0	< LLOQ
8358	3	Female / F0	0.0477
8361	3	Female / F0	87.5
9043	3	Male / F1	< LLOQ
9044	3	Male / F1	< LLOQ
9045	3	Male / F1	< LLOQ
9046	3	Male / F1	< LLOQ
9047	3	Male / F1	< LLOQ
9124	3	Female / F1	< LLOQ
9125	3	Female / F1	< LLOQ
9126	3	Female / F1	< LLOQ
9127	3	Female / F1	< LLOQ
9128	3	Female / F1	< LLOQ

LLOQ - lower limit of quantitation (theoretical concentration 0.0200 µg/mL liver homogenate)

 $a = 1.00 \mu g/mL$ of PFH in liver homogenate is equivalent to 10.0 $\mu g/mL$ of PFH in liver sample

Page 18 Test Site Ref. No. 142578

Table 4 Group 4 Liver Homogenate Concentrations of Perfluorohexanoic Acid (PFH)

Subject	Subject Group	Gender/Generation	Liver Homogenate Concentration (µg/mL) ^a
8371	4	Female / F0	< LLOQ
8372	4	Female / F0	< LLOQ
8373	4	Female / F0	< LLOQ
8374	4	Female / F0	< LLOQ
8375	4	Female / F0	< LLOQ
8376	4	Female / F0	< LLOQ
8377	4	Female / F0	< LLOQ
8378	4	Female / F0	1.295702
8381	4	Female / F0	0.037621
8383	4	Female / F0	0.063321
8384	4	Female / F0	< LLOQ
8385	4	Female / F0	0.486
8386	4	Female / F0	98.4
8387	4	Female / F0	< LLOQ
8388	4	Female / F0	< LLOQ
8389	4	Female / F0	< LLOQ
9063	4	Male / F1	< LLOQ
9064	4	Male / F1	< LLOQ
9065	4	Male / F1	< LLOQ
9066	4	Male / F1	< LLOQ
9067	4	Male / F1	< LLOQ
9143	4	Female / F1	< LLOQ
9144	4	Female / F1	< LLOQ
9145	4	Female / F1	< LLOQ
9146	4	Female / F1	< LLOQ
9147	4	Female / F1	< LLOQ

LLOQ - lower limit of quantitation (theoretical concentration 0.0200 µg/mL liver homogenate)

 $a = 1.00 \mu g/mL$ of PFH in liver homogenate is equivalent to 10.0 $\mu g/mL$ of PFH in liver sample

 Table 5
 Calibration Standard Statistics

	Concentration in Liver Homogenate (µg/mL)									
Analytical Run ^a	0.0200	0.0400	0.100	0.250	1.00	2.50	4.50	6.50	8.50	10.0
2	0.0196	0.0412	0.103	0.242	1.01	2.57	4.39	6.12	8.46	10.5
4	0.0198	0.0420	0.0945	0.240	1.02	2.55	4.63	6.61	8.38	9.82
5	0.0204	0.0393	0.0940	0.259	1.00	2.52	4.60	6.64	8.24	9.96
Mean	0.01992	0.04084	0.09705	0.2471	1.011	2.548	4.541	6.458	8.362	10.081
S.D.	0.000380	0.001380	0.004862	0.009988	0.0097	0.0231	0.1326	0.2937	0.1094	0.3394
% CV	1.907726	3.4	5.0	4.0	1.0	0.9	2.9	4.5	1.3	3.4
% Bias	-0.405	2.1	-3.0	-1.2	1.1	1.9	0.9	-0.6	-1.6	0.8
n	3	3	3	3	3	3	3	3	3	3

a = Run 01 was a qualification batch, no study samples were analyzed, data not included in statistical calculation. Run 03 was rejected due to a technical error, data not included in statistical calculation. Run 06 was used for investigation of internal standard response, no study samples were analyzed, data not included in statistical calculation.

Page 20 Test Site Ref. No. 142578

 Table 6
 Quality Control Sample Statistics

Amalastical Dama	Concentration in Liver Homogenate (μg/mL)						
Analytical Run ^a	0.0600	1.50	8.00				
	0.0633	1.51	7.46				
2	0.0596	1.59	7.83				
2	0.0602	1.51	8.40				
	0.0590	1.57	8.04				
	0.0624	1.64	8.05				
4	0.0627	1.58	7.84				
T	0.0628	1.56	8.14				
	0.0635	1.58	8.03				
	0.0616	1.57	8.66				
5	0.0594	1.63	8.30				
3	0.0598	1.62	8.30				
	8.11 ^b	1.65	$0.0595^{\rm b}$				
Mean	0.0613	1.586	8.095				
S.D.	0.00171	0.0454	0.3235				
% CV	2.8	2.9	4.0				
% bias	2.2	5.7	1.2				
n	11	12	11				

a = Run 01 was a qualification batch, no study samples were analyzed, data not included in statistical calculation.
 Run 03 was rejected due to a technical error, data not included in statistical calculation.
 Run 06 was used for investigation of internal standard response, no study samples were analyzed, data not included in statistical calculation.

b = Outside of acceptance criteria; suspected a sample mix up between low and high QC; not included in statistical calculation

Page 21 Test Site Ref. No. 142578

Table 7 Study Sample Re-assay History

		Original			Reassay		Reported	Reason
Custom	Liver	Original	Reason	Liver	Reassay	Liver	C	
Subject	ID	Homogenate	Curve	for	Homogenate	Curve	Homogenate	Doported
	ID	Conc.	Number	Reassay	Conc.	Number	Conc.	Conc.
		$(\mu g/mL)$			$(\mu g/mL)$		(μg/mL)	Conc.
8316	429600000017	0.118	2	1	0.105, 0.110	4, 4	0.118	1
8361	429600000006	> ULOQ	2	2	87.5	4	87.5	2
8386	429600000014	> ULOQ	2	2	98.4	4	98.4	2

ULOQ - upper limit of quantitation (theoretical concentration 10.0 µg/mL in liver homogenate)

Reasons for re-assay:

- 1) Anomalous sample value
- 2) Initial sample value above >ULOQ

Reasons for reported concentration:

- 1) Both repeated values within 20% of the initial value; initial value reported
- 2) Sample was diluted and repeated, repeated value within analytical range

Figure 1 Representative Calibration Line (Theoretical Liver Homogenate Concentration 0.0200 to 10.0 µg/mL)

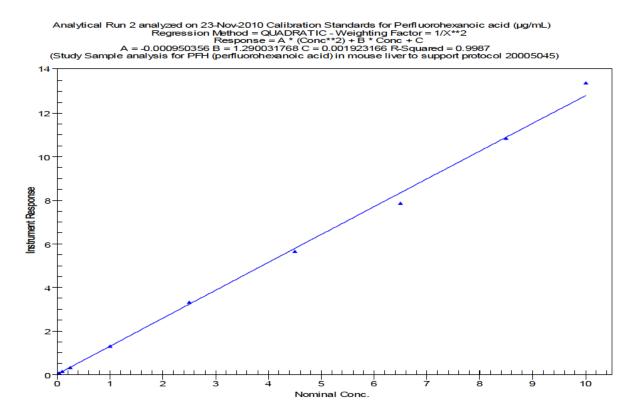


Figure 2 Representative LLOQ Standard Chromatogram (Theoretical Concentration in Liver Homogenate 0.0200 µg/mL)

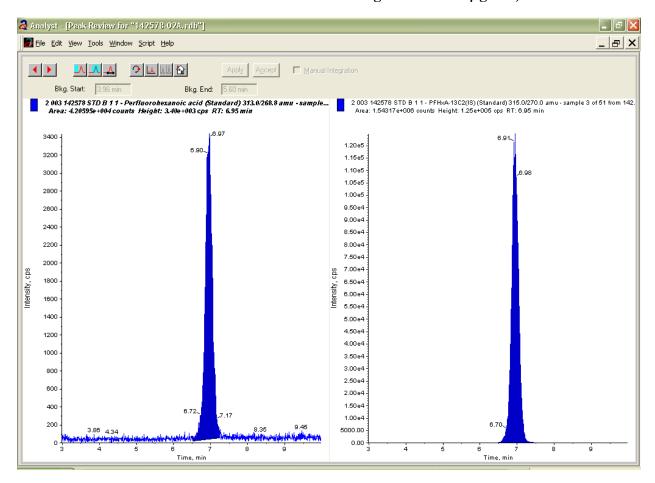


Figure 3 Representative ULOQ Standard Chromatogram (Theoretical Concentration in Liver Homogenate 10.0 µg/mL)

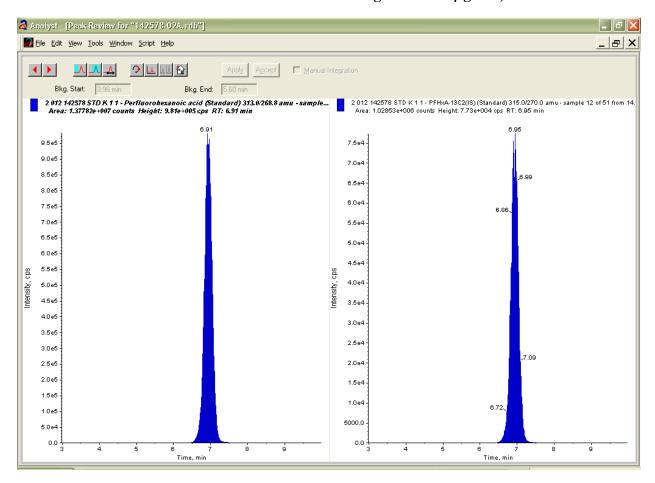


Figure 4 Representative Double Blank Chromatogram

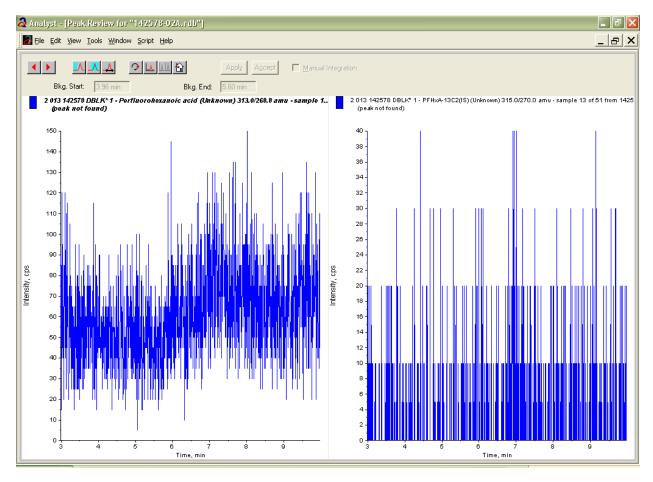


Figure 5 Representative Sample Chromatogram (Group 1, Animal No. 8313)

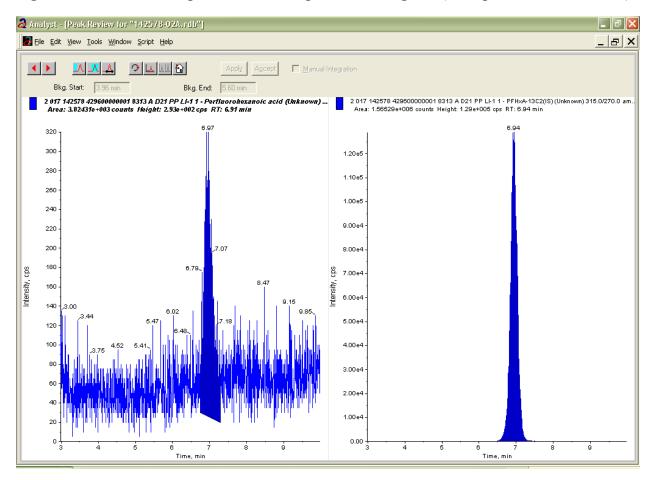


Figure 6 Representative Sample Chromatogram (Group 2, Animal No. 8333)

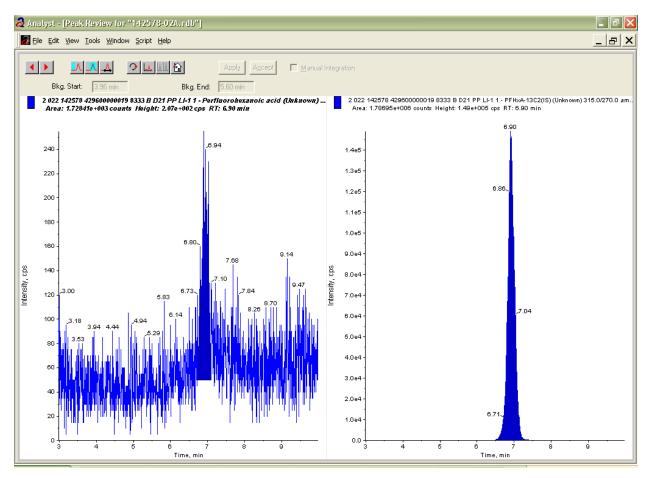


Figure 7 Representative Sample Chromatogram (Group 3, Animal No. 8354)

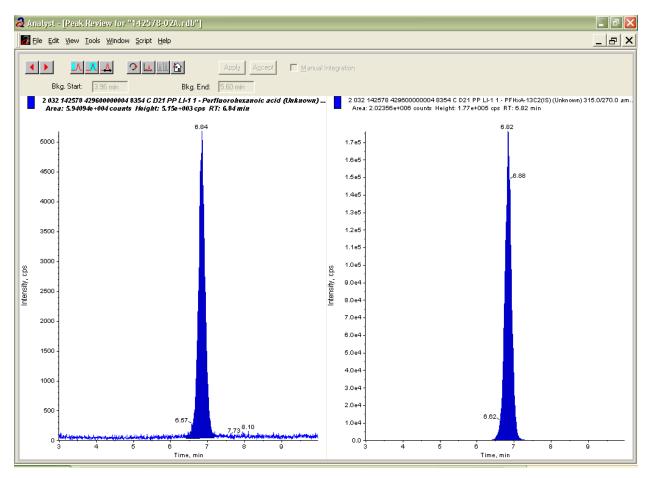
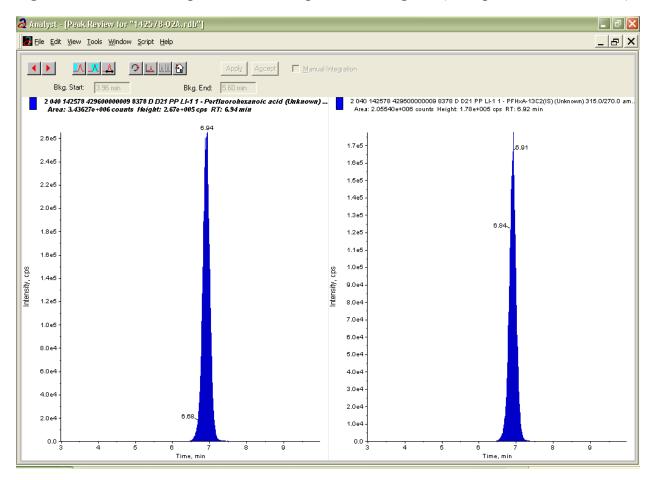



Figure 8 Representative Sample Chromatogram (Group 4, Animal No. 8378)

Page 30 Test Site Ref. No. 142578

Appendix 1

Certificates of Analysis

Certificate of Analysis

Daikin Industries,LTD.

Name of Sample

PFH Ammonium Salt (C-1500N)

7005

Date of Analysis

May 14, 2009

Purify

47.4% (Effective component in Water) *50.8*0.934%=47.4%

COMPOSITION

identity			Conc.
#1	Ammonium Perfluorohexanoate CAS RN, 21615-47-4		93.4%
#2	Unknown		6.6%
	L	Total	100%

Analysis system (HPLC)

: Waters Alliance2695

Equipment Detector

: Waters 2487UV

Detection wavelength

: 210nm

Analysis condition Column

: TOSOH TSKGel ODS120T 4.6mm×150mm

Temp.

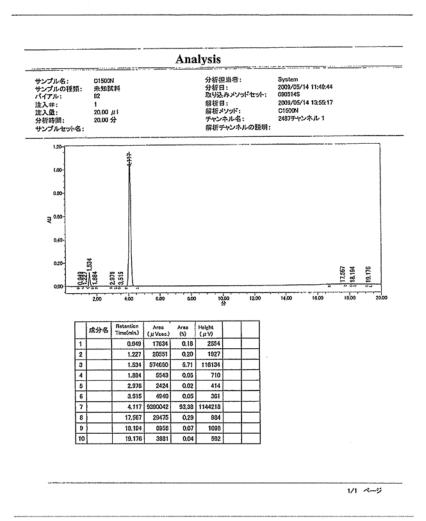
:40 °C

Mobile phase

: A=acetonitrile , B=Solution of 0.6% perchloric acid in water Gradient

: A:B=50:50(mass%) (0-10min.) →90:10(mass%) (15-20min.) $:20\mu L$

Injection volume


Injection Concentration : 1% (dilute 50times with water)

Chemical R&D Center Unidyne Group Senior Researcher

SIGNATURE

DATE: May 18, 2009

Page 32
Testing Facility Study No. 20005045
Test Site Ref. No. 142578

Page 33 Test Site Ref. No. 142578

Testing Facility Study No. 20005045

Sep 16, 2010
Date

Amended expire date

Test Substance : PFH Ammonium Salt (Ammonium salt of Perfluorinated

Hexanoic Acid). Ammonium Perfluorohexanoate's

CAS number : 21615-47-4.

Name of test substance : C1500N

Lot No. : 7005

EXPIRY DATE : 31 July 2012

Daikin Industries, LTD
Chemical Division

APPENDIX 6 - ENVIRONMENTAL AND HUSBANDRY REPORTS

Temperature and Relative Humidity

ARGUS

Temperature and Relative Humidity Report Location: Room 04

Protocol Number: 20005045

Range of Dates: 21-Sep-2010 14:26 to 03-Dec-2010 08:59

Target Range: Species: Mouse	Temperature 64°F to 79°F		Relative Humidity 30% to 70% 74 1746.25 1746	
Total Number of Days: Total Number of Hours: Total Number of Data Points:	74 1746.25 1746			
Mean (± SD):	72.4	(± 0.8)	46.1	(± 8.7)
Maximum: Median: Minimum:	74.4 72.5 69.7		73.3 43.0 19.6	
Number of Points in Range (%): Number of Points High (%): Number of Points Low (%):	1746 0 0	(100.0) (0.0) (0.0)	1710 15 21	(97.9) (0.9) (1.2)

Report Generated: 03-Dec-2010 at 15:51

COMMENTS:	
REVIEWED BY:	DATE: 03 Dec 7016

ARGUS

Relative Humidity Deviations Report Location: Room 04

Protocol Number: 20005045

Range of Dates: 21-Sep-2010 14:26 to 03-Dec-2010 08:59

Humidity Ta Species: Mo		nge:	30% to 70%		
Date	Time	R.H.	Date	Time	R.H.
24-Sep-2010	11:00	71.0 H	10-Oct-2010	03:00	25.8 L
24-Sep-2010	20:00	70.6 H	10-Oct-2010	04:00	26.7 L
25-Sep-2010	02:00	70.4 H	10-Oct-2010	05:00	26.1 L
27-Sep-2010	17:00	71.0 H	10-Oct-2010	06:00	26.4 L
28-Sep-2010	22:00	70.3 H	10-Oct-2010	07:00	24.9 L
30-Sep-2010	08:00	70.9 H	10-Oct-2010	08:00	22.3 L
30-Sep-2010	13:00	71.0 H	10-Oct-2010	09:00	24.0 L
30-Sep-2010	14:00	73.3 H	10-Oct-2010	10:00	19.6 L
30-Sep-2010	17:00	72.8 H	10-Oct-2010	11:00	19.9 L
30-Sep-2010	18:00	72.1 H	10-Oct-2010	12:00	25.0 L
01-Oct-2010	01:00	72.6 H	13-Oct-2010	05:00	28.2 L
09-Oct-2010	19:00	29.1 L	13-Oct-2010	06:00	28.2 L
09-Oct-2010	20:00	26.5 L	13-Oct-2010	07:00	28.8 L
09-Oct-2010	21:00	26.5 L	13-Oct-2010	08:00	29.8 L
09-Oct-2010	22:00	29.2 L	27-Oct-2010	12:00	70.2 H
10-Oct-2010	00:00	29.2 L	27-Oct-2010	14:00	71.8 H
10-Oct-2010	01:00	29.1 L		15:00	70.5 H
10-Oct-2010	02:00	27.5 L	27-Oct-2010	17:00	70.1 H

 $\label{eq:Lagrangian} \begin{array}{ll} \mbox{H = Value out of range - Low} \\ \mbox{R.H. = Relative Humidity (\%)} \end{array}$

Report Generated: 03-Dec-2010 at 15:51

These devi	ations did not adversely affect the o	outcome or interpretation of the study.
The following	ng deviation(s) impacted on the out	tcome of the study as described:
Study Director:	(1)	Date: 18 Fel 2011

Feed Analysis

Return to Certified Analysis Retrieval

Product Code:

Product Desc:

CERTIFIED RODENT DIET

Lab Number: Lot Code: Entered: L1019781-1 JUL 30 10 1A 8/18/2010

Assay	Analysis	Units
PROTEIN	21.0	%
FAT (ACID HYDRO)	5.55	%
FIBER (CRUDE)	5.02	%
ARSENIC	0.227	PPM
CADMIUM	0.100	PPM
CALCIUM	0.8124	%
LEAD	0.224	PPM
MERCURY	LESS THAN 0.025	PPM
PHOSPHORUS	0.6678	%
SELENIUM	0.388	PPM

Organophosphates	PPM	Organophosphates	PPM
Diazinon	LESS THAN 0.02	Disulfoton	LESS THAN 0.02
Ethion	LESS THAN 0.02	Malathion	LESS THAN 0.02
Methyl Parathion	LESS THAN 0.02	Parathion	LESS THAN 0.02
Thimet	LESS THAN 0.02	Trithion	LESS THAN 0.02

	reinwert und der der der der der der der der der de		
Chlorinated Hydrocarbons and PCB	PPM	Chlorinated Hydrocarbons and PCB	РРМ
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS THAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	LESS THAN 0.02
DDE	LESS THAN 0.02	DDT	LESS THAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS THAN 0.02
Endrin	LESS THAN 0.02	НСВ	LESS THAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Epoxide	LESS THAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS THAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS THAN 0.15
Thiodan	LESS THAN 0.02		
AFLATOXIN PPB Aflatoxins		LESS TH	HAN 5

EXACT COPY

DAUN II NANU

Approved Approved Sepano

http://www.labdiet.com/certified/pwa_spc002.asp

9/28/2010

l	ì
	l l
	t t
1	

No notes.

Approved by: Angela Crutcher

For additional information, please contact:

1) Customer Service at (314) 982-1310 -- for assay methodology

2) Dr. Kristi Thompson, (765)894-3104 or Dr. Carrie Schultz, (314)974-6529 - for nutritional interpretation

3) Richmond, IN Manufacturing Plant at (765) 962-9561 - all other questions

The term "Less Than" is used to signify the lower limit of quantitation of the procedure under the conditions employed.

The use of the term "Less Than" does not imply that traces of analyte were present.

Product Code: Product Desc: Lab Number: Lot Code: Entered:

5002 CERTIFIED RODENT DIET L1018820-2 JUL 10 10 1B

07/27/10

Assay		The state of the s	Analysis	Units
PROTEIN	The state of the s	to any moral of the latest and an arrival burger to the property of the second parameters and the second second	21.2	farmer i compression
FAT (ACID HYDRO)		5.5		%
FIBER (CRUDE)	and the state of t	Piran en mongres en la parte de la principa del la principa de la principa del la principa de la principa del l	4.78	%
ARSENIC		LÈS	THAN 0.2	<u></u>
CADMIUM	era era (d. 10 era) - 11 e K. L <u>ankansk Landinskip (a ere er</u> iliging).	apar an a superpresentation of production of the superpresentation of t	0.072	تنتنين فللماني والأ
CALCIUM	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -		0.730	
LEAD	Andrew trade a les adaption polation de la collection de		0.159	programme and a second
MERCURY	des Comment of the Co	I FSS T	HAN 0.025	Paramin management
PHOSPHORUS		LLOO I	0.614	
SELENIUM	- beneate the property of the same of the		0.390	
Organophosphates	IPPM:	Organophosphate		
Diazinon	LESS THAN 0.02	Disulfoton		IAN 0.02
Ethion	LESS THAN 0.02	Malathion	A Section of the sect	IAN 0.02
Methyl Parathion	LESS THAN 0.02	Parathion	LESS TH	
Thimet	LESS THAN 0.02	Trithion	LESS TH	AN 0.02
Chlorinated Hydrocarbons and PCB	PPM	Chlorinated Hydrocarbons and PCB	I PPM	
Aldrin	LESS THAN 0.02	Alpha-BHC	LESS TH	IAN 0.02
Beta-BHC	LESS THAN 0.02	Chlordane	manda printishanan appaparan	AN 0.02
DDE	LESS THAN 0.02	DDT	LESS TH	IAN 0.02
Delta-BHC	LESS THAN 0.02	Dieldrin	LESS TH	IAN 0.02
Endrin	LESS THAN 0.02	HOB	LESS TH	IAN 0.02
Heptachlor	LESS THAN 0.02	Heptachlor Époxide	LESS TH	IAN 0.02
Lindane	LESS THAN 0.02	Methoxychlor	LESS TI-	IAN 0.02
Mirex	LESS THAN 0.02	PCB	LESS TH	IAN 0.15
Thiodan	LESS THAN 0.02		The same of the sa	Transport Virtual States
AFLATOXIN	PPB Aflatoxins	I ECC.	HAN 5	

Approved by: Angela Crutcher

Ļ

Approved 29 Ser 2010

Certificate Issue Date: 6/8/10

Certificate of Analysis

Product# F05682

BUNNY BLOCKS, 50 GM, VERY BERRY, CERTIFIED (CONTAMINANT SCREENED) (100/BOX)

Lot# 123754.00

Exp Date Cool Dry: 3/11

100 Fored
Affrond
182m 2010

Proximate Pro	file		Organochlorine A	nalysis
	Theoretical(%)	Actual (%)		Results
Protein	0.00%	0.00%	Aldrin	< 0.010 ppm
Fat	1.00%	0.80%	a-BHC	< 0.010 ppm
Fiber	0.00%	0.00%	ß-BHC	< 0.010 ppm
Ash	0.00%	0.00%	Δ-BHC	< 0.010 ppm
Moisture	< 5.00%	4.80%	y-BHC	< 0.010 ppm
Carbohydrate	94.00%	94.40%	Chlordane (Total)	< 0.020 ppm
			4,4'-DDT	< 0.010 ppm
Micronutrient A	ssav		4,4'-DDD	< 0.010 ppm
EXTENSION AND DESCRIPTION AND			4,4'-DDE	< 0.010 ppm
			Dieldrin	< 0.010 ppm
			Endosulfan	< 0.010 ppm
Caloric Profile			Endrin	< 0.010 ppm
	ctual(Kcal/gm)		Heptachlor	< 0.010 ppm
	0.000		Heptachior Epoxide	< 0.010 ppm
Protein	0.080		Hexachlorobenzene	< 0.010 ppm
Fat Carbohydrate	3.816		Methoxychlor	< 0.010 ppm
Total	3.896		Mirex	< 0.010 ppm
Total	3.090		Toxaphen	< 0.100 ppm
Aflatoxin Analy	sis		PCB's (Total)	< 0.100 ppm
	Results	Limits	Organophosphoru	ıs Analysis
Aflatoxins (Total)	< 0.005 ppm	0.005 ppm		Results
Heavy Metal Ar	alveis		Carbophenothion	< 0.100 ppm
			Diasulfoton	< 0.100 ppm
	Results	Limits	Diazinon	< 0.100 ppm
Arsenic	< 0.100 ppm	1.000 ppm	Ethion	< 0.100 ppm
Cadmium	< 0.100 ppm	0.500 ppm	Malathion	< 0.100 ppm
Lead	< 0.100 ppm	1.500 ppm	Methyl Parathion	< 0.100 ppm
Mercury	< 0.100 ppm	0.200 ppm	Ethyl Parathion	< 0.100 ppm
Selenium	< 0.100 ppm	0.500 ppm	Phorate	< 0.100 ppm

Results have been reviewed by our Quality Assurance Department to ensure product results do not exceed maximum acceptable limits for each contaminant. All tests are performed by an independant laboratory registered with the EPA and member of the AOAC international and AOCS. The results reported represent the analysis performed on each batch of base meal in compliance with Quality Assurance procedures.

Judy Drake Quality Assurance Manager

EXACT COPY

SUZADEND ISO 9001:2008 Certified

One 8th Street, Suite 1, Frenchtown, NJ 08825 - Toll-Free: 800-996-9908 (U.S. & Canada)

Phone: 908-996-2155 - Fax: 908-996-4123 - Web: www.bio-serv.com

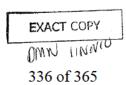
Water Analysis

Analytical Report

Regarding:

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044


Account No: WO5899, CHARLES RIVER LABORATORIES, INC. Project No: WO5899, CHARLES RIVER LABORATORIES, INC.	P.O. No: PWSID No:	6600061155	Inv. No: 1240501
Sample Number L3474282-1 Sample Description DRINKING WATER - IN VITRO Received Temp: 40 F Iced (Y/N): Y	Samp. Date 09/03/10 1	/Time/Temp Sa 1:50am NA F Cu	mpled by stomer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM COLILERT P/A SM 9223B E. COLI COLILERT P/A SM 9223B STANDARD PLATE COUNT SM 9215B	NEG col/100ml NEG col/100ml <1 col/ml		09/04/10 01:56PM ARD 09/04/10 01:56PM ARD 09/04/10 06:40AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02 mg/l		09/03/10 11:53AM JCN
Sample Number L3474282-2 Sample Description DRINKING WATER - ANALYTICAL Received Temp: 40 F Iced (Y/N): Y	Samp. Date 09/03/10 1		mpled by stomer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
BNVIRONMENTAL MICROBIOLOGY COLIFORM COLILERT P/A SM 9223B E. COLI COLILERT P/A SM 9223B STANDARD PLATE COUNT SM 9215B	NEG col/100ml NEG col/100ml <1 col/ml		09/04/10 01:57PM ARD 09/04/10 01:57PM ARD 09/04/10 06:40AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02 mg/l		09/03/10 12:08PM JCN
Sample Number L3474282-3 Sample Description DRINKING WATER - FILL STATION Received Temp: 40 F Iced (Y/N): Y	Samp. Date 09/03/10 1		mpled by stomer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM COLILERT P/A SM 9223B	NEG col/100ml	1. col/100ml	09/04/10 01:56PM ARD

Page 1 of 4

Serial Number: 1542413

Monas / Homes
Thomas J. Hines, President
13-0022010

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.qclaboratories.com

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.	P.O. No: 6600061155 Inv. No: 1240501 PWSID No:
Sample Number Sample Description L3474282-3 DRINKING WATER - FILL STATION	Samp. Date/Time/Temp Sampled by O9/03/10 12:04pm NA F Customer Sampled
Parameter Method E. COLI COLILERT P/A SM 9223B STANDARD PLATE COUNT SM 9215B	Result RLs Test Date, Time, Analyst NEG col/100ml 1. col/100ml 09/04/10 01:56PM ARD <1 col/ml 1. col/ml 09/04/10 06:40AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	0.76 mg/l 0.02 mg/l 09/03/10 12:09PM JCN
Sample Number Sample Description L3474282-4 DRINKING WATER - FORMULATION Received Temp: 40 F Iced (Y/N): Y	Samp. Date/Time/Temp Sampled by 09/03/10 12:08pm NA F Customer Sampled
Parameter Method	Result RLs Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM COLILERT P/A SM 9223B E. COLI COLILERT P/A SM 9223B STANDARD PLATE COUNT SM 9215B	NEG co]/100ml 1. co]/100ml 09/04/10 01:56PM ARD NEG co]/100ml 1. co]/100ml 09/04/10 01:56PM ARD <1 co]/ml 1. co]/ml 09/04/10 06:40AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02 mg/1 09/03/10 12:10PM JCN
Sample Number L3474282-5 Sample Description DRINKING WATER - ROOM 55 RACK 012 Received Temp: 40 F Iced (Y/N): Y	Samp. Date/Time/Temp Sampled by 09/03/10 12:11pm NA F Customer Sampled
Parameter Method	Result RLs Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM COLILERT P/A SM 9223B E. COLI COLILERT P/A SM 9223B STANDARD PLATE COUNT SM 9215B	NEG col/100ml 1. col/100ml 09/04/10 01:57PM ARD NEG col/100ml 1. col/100ml 09/04/10 01:57PM ARD <1 col/ml 1. col/ml 09/04/10 06:40AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	0.48 mg/l 0.02 mg/l 09/03/10 12:12PM JCN
Sample Number L3474282-6 Sample Description DRINKING WATER - ROOM 27 RACK 1184 Received Temp: 40 F Iced (Y/N): Y	Samp. Date/Time/Temp Sampled by 09/03/10 12:14pm NA F Customer Sampled
Parameter Method	Result RLs Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM COLILERT P/A SM 9223B E. COLI COLILERT P/A SM 9223B	NEG col/100ml 1. col/100ml 09/04/10 01:59PM ARD 1. col/100ml 09/04/10 01:59PM ARD
	Δ

Page 2 of 4

Serial Number: 1542413

EXACT COPY

BYNW (INOVIO)

337 of 365

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155 PWSID No:

Inv. No: 1240501

Sample Number L3474282-6

Sample Description DRINKING WATER - ROOM 27 RACK 1184

Samp, Date/Time/Temp 09/03/10 12:14pm NA F

Sampled by Customer Sampled

homos

Thomas J. Hines, President

Parameter

Result 2 col/ml

RLs 1. col/ml

Test Date, Time, Analyst 09/04/10 06:40AM CAS

STANDARD PLATE COUNT FIELD SERVICES
CHLORINE RESIDUAL

SM 9215B

SM 4500CL G

0.46 mg/1

0.02 mg/1

09/03/10 12:16PM JCN

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; TNTC=too numerous to count

Page 3 of 4

Serial Number: 1542413

EXACT COPY Own IINNIO

338 of 365

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155 PWSID No:

Inv. No: 1240501

- A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.

- All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.

- The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.

- The reported results relate only to the samples.

- QC NELAP ID's:PA 09-0013, NJ PA166,FL E87954,NY 11223,CT PH-0768,DE PA-018,KY 90228,MD 206,EPA PA00018.Bioassay:PA 09-03574,NJ PA034,FL E87953,KS E10373,SC 89020001.

- QC STATE ID's:Wind Gap,NJ PA001,PA 48-01334;E RUTHERFORD NJ02015;Vineland NJ06005; Reading PA 06-03543.

- All samples are collected as "grab" samples unless otherwise identified.

- MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

- The test results meet all requirements of NELAC unless otherwise specified.

- The report shall not be reproduced except in full without the written consent of the laboratory.

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 4 of 4

Serial Number: 1542413

Approved MEDYULO 130CT 2010

EXACT COPY OMN INMO 339 of 365

Analytical Report

Regarding:

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044

Page 1 of 4

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.	P. PWS	0. No: 6600061155 SID No:	Inv. No: 1249368
Sample Number Sample Description L3503244-1 DRINKING WATER - IN VITRO Received Temp: 34 F Iced (Y/N): Y	Samp 10/0	o. Date/Time/Temp S 01/10 11:03am NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/100m 1. col/ml	17 10/01/10 06:52PM ARD 10/01/10 05:15PM ARD
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02	mg/l	10/01/10 11:06AM JCN
Sample Number Sample Description L3503244-2 DRINKING WATER - FORMULATION Received Temp: 34 F Iced (Y/N): Y	Samp 10/0	o. Date/Time/Temp S 01/10 11:13am NA F	Sampled by Customer Sampled
_rameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/100m 1. col/ml	17 10/01/10 06:52PM ARD 10/01/10 05:15PM ARD
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02	mg/l	10/01/10 11:15AM JCN
Sample Number Sample Description L3503244-3 DRINKING WATER - FILL STATION Received Temp: 34 F Iced (Y/N): Y	Samp 10/0		sampled by customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/100m 1. col/ml	17 10/01/10 06:52PM ARD 10/01/10 05:15PM ARD
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	0.60	mg/1	10/01/10 11:21AM JCN
	2001	Mell	
	Mrs.	med med	
	MA	MO DI	

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.qclaboratories.com

Serial Number: 1559896

exact copy

340 of 365

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.		P.O. No: 6600061155 PWSID No:	Inv. No: 1249368
Sample Number Sample Description DRINKING WATER - ANALYTICAL Received Temp: 34 F Iced (Y/N): Y		Samp. Date/Time/Temp 10/01/10 11:18am NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/10 <1 col/ml		Oml 10/01/10 06:52PM ARD 10/01/10 05:15PM ARD
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02	mg/l	10/01/10 11:23AM JCN
Sample Number L35D3244-5 Sample Description DRINKING WATER - ROOM 13 RACK 126 Received Temp: 34 F Iced (Y/N): Y	!	Samp. Date/Time/Temp 10/01/10 11:24am NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/10 <1 col/ml		0ml 10/01/10 06:52PM ARD 10/01/10 05:15PM ARD
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	0.17	mg/l	10/01/10 11:27AM JCN
Sample Number L3503244-6 Sample Description DRINKING WATER - ROOM T-2 RACK 1761 Received Temp: 34 F Iced (Y/N): Y		Samp. Date/Time/Temp 10/01/10 11:30am NA F	Sampled by Customer Sampled
L3503244-6 DRINKING WATER - ROOM T-2 RACK 1761			Sampled by Customer Sampled Test Date, Time, Analyst
L3503244-6 DRINKING WATER - ROOM T-2 RACK 1761 Received Temp: 34 F Iced (Y/N): Y	;	10/01/10 11:30am NA'F RLs Oml 1. co1/100	Customer Sampled
DRINKING WATER - ROOM T-2 RACK 1761 Received Temp: 34 F Iced (Y/N): Y Parameter Method ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B	Result <1 col/100	10/01/10 11:30am NA'F RLs Oml 1. co1/100	Customer Sampled Test Date, Time, Analyst Oml 10/01/10 06:52PM ARD
DRINKING WATER - ROOM T-2 RACK 1761 Received Temp: 34 F Iced (Y/N): Y Parameter Method ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G	Result <1 col/10 <1 col/ml	10/01/10 11:30am NA F RLs Oml 1. col/100 1. col/ml	Customer Sampled Test Date, Time, Analyst Dml 10/01/10 06:52PM ARD 10/01/10 05:15PM ARD 10/01/10 11:35AM JCN

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155

Inv. No: 1249368

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3503244-2:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3503244-3:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3503244-4:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one 1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

- 1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100m1" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; TNTC=too numerous to count
 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.
 The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.
 The reported results relate only to the samples.
 QC NELAP ID's:PA 09-00131,NJ PA166,FL E87954,NY 11223,CT PH-0768,DE PA-018,KY 90228,MD 206,EPA PA00018.Bioassay:PA 09-03574,NJ PA034,FL E87953,KS E10373,SC 89020001.

- QC STATE ID's:Wind Gap,NJ PA001,PA 48-01334;E RUTHERFORD NJ02015; Vineland NJ06005; Reading PA 06-03543.

 All samples are collected as "grab" samples unless otherwise identified.

 MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.

 The test results meet all requirements of NELAC unless otherwise specified.

 The report shall not be reproduced except in full without the written consent of the laboratory.

age 3 of 4

Serial Number: 1559896

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155 PWSID No:

Approved

Inv. No: 1249368

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

'age 4 of 4

Serial Number: 1559896

ct copy

Thomas / HMES
Thomas J. Hines, President

Analytical Report

Regarding:

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044

Account No: W05899, CHARLES RIV Project No: W05899, CHARLES RIV	ER LABORATORIES, INC. ER LABORATORIES, INC.		.O. No: 6600061155 SID No:	Inv. No: 1258935
Sample Number L3539696-1 Sample Descripti DRINKING WATER - Received Temp:	on IN VITRO 40 F Iced (Y/N): Y	Sam 11/	p. Date/Time/Temp S 05/10 12:45pm NA F C	ampled by ustomer Sampled
Parameter	Method	Result	RLs	Test Date, Time, Analyst
BNVIRONMENTAL MICROBIOL COLIFORM-MF STANDARD PLATE COUNT	OGY SM 9222B SM 9215B	<1 col/100ml 14 col/ml	1. col/100m 1. col/ml	1 11/06/10 01:12PM AMD 11/06/10 06:26AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- FIELD	SM 4500CL G	< 0.02	mg/l	11/05/10 12:50PM JCN
Sample Number Sample Descripti L3539696-2 BRINKING WATER - Received Temp:	on FORMULATION 40 F Iced (Y/N): Y	Sam 11/	p. Date/Time/Temp S 05/10 12:58pm NA F C	ampled by ustomer Sampled
Parameter	Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOL COLIFORM-MF STANDARD PLATE COUNT	OGY SM 9222B SM 9215B	<1 col/100ml <1 col/ml	1. col/100m 1. col/ml	1 11/06/10 01:12PM AMD 11/06/10 06:26AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- FIELD	SM 4500CL G	< 0.02	mg/1	11/05/10 01:03PM JCN
Sample Number Sample Descripti L3539696-3 DRINKING WATER - Received Temp:	on FILL STATION 40 F Iced (Y/N): Y	Sam 11/	p. Date/Time/Temp S 05/10 01:03pm NA F C	ampled by ustomer Sampled
Parameter	Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOL COLIFORM-MF STANDARD PLATE COUNT	OGY SM 9222B SM 9215B	<1 col/100ml <1 col/ml	1. col/100m 1. col/ml	1 11/06/10 01:12PM AMD 11/06/10 06:26AM CAS
FIBLD SERVICES CHLORINE RESIDUAL LOW LEVEL- FIELD	SM 4500CL G	0.84	mg/1	11/05/10 01:05PM JCN

Page 1 of 4

This report is a revision of report number 1583799 Serial Number: 1584209

Thomas J. Hines, President

Thomas

EXACT COPY

SO 290240 1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.gclaboratories.com

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.		P.O. No: 6600061155 PWSID No:	Inv. No: 1258935
Sample Number L3539696-4 Sample Description DRINKING WATER - ANALYTICAL Received Temp: 40 F Iced (Y/N): Y		Samp. Date/Time/Temp 11/05/10 01:07pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/1 <1 col/m		OOml 11/06/10 01:12PM AMD 1 11/06/10 06:26AM CAS
FIBLD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	< 0.02	mg/1	11/05/10 01:09PM JCN
Sample Number L3539696-5 Sample Description DRINKING WATER - ROOM 36 RACK 289 Received Temp: 40 F Iced (Y/N): Y		Samp. Date/Time/Temp 11/05/10 01:11pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/1 1 col/m		00ml 11/06/10 01:12PM AMD 1 11/06/10 06:26AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	0.76	mg/l	11/05/10 01:14PM JCN
Sample Number L3539696-6 Sample Description DRINKING WATER - ROOM 47 RACK 666 Received Temp: 40 F Iced (Y/N): Y		Samp. Date/Time/Temp 11/05/10 01:15pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/1 <1 col/m		OOml 11/06/10 01:12PM AMD 1 11/06/10 06:26AM CAS
FIELD SERVICES CHLORINE RESIDUAL LOW LEVEL- SM 4500CL G FIELD	0.80	mg/l	11/05/10 01:17PM JCN

L3539696-1:

Page 2 of 4

This report is a revision of report number 1583799 Serial Number: 1584209

Thomas J. Hines, President

Thomas J. Hines, President

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155 PWSID No:

Inv. No: 1258935

A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "(1 col/100m1" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3039090-0:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "(1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

- 1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
 Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; TNTC=too numerous to count
 A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
 All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.
 The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.
 The reported results relate only to the samples.
 QC NELAP ID's:PA 09-00131,NJ PA166,FL E87954,NY 11223,CT PH-0768,DE PA-018,KY 90228,MD 206,EPA PA00018.Bioassay:PA 09-03574,NJ PA034,FL E87953,KS E10373,SC 89021001.
 QC STATE ID's:Wind Gap,NJ PA001,PA 48-01334;E RUTHERFORD NJ02015;Vineland NJ06005; Reading PA 06-03543.
 All samples are collected as "grab" samples unless otherwise identified.
 MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.
 The test results meet all requirements of NELAC unless otherwise specified.
 The report shall not be reproduced except in full without the written consent of the laboratory.

This report is a revision of report number 1583799 Serial Number: 1584209 Thomas / # Page 3 of 4 Thomas J. Hines, President EXACT COPY So zadeero

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155 PWSID No: Inv. No: 1258935

Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Approved wo Chomo

1 of 1

This report is a revision of report number 1583799 Serial Number: 1584209

EXACT COPY

Thomas J. Hines, President

Analytical Report

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044 Regarding:

MATTHEW VANEMAN CHARLES RIVER LABORATORIES, INC. 905 SHEEHY DRIVE HORSHAM, PA 19044

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.	P.O. PWSID	No: 6600061155 No:	Inv. No: 1265104
Sample Number Sample Description L3566980-1 INVITRO Received Temp: 39 F Iced (Y/N): Y		Date/Time/Temp 10 12:02pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/10 1. col/ml	Oml 12/04/10 01:10PM ARD 12/04/10 06:25AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	< 0.02 mg/l	0.02 mg/1	12/03/10 12:05PM CU
Sample Number Sample Description FORMULATION Received Temp: 39 F Iced (Y/N): Y	Samp. D 12/03/1	Date/Time/Temp 10 12:13pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/100 1. col/ml	ml 12/04/10 01:10PM ARD 12/04/10 06:25AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	< 0.02 mg/l	0.02 mg/1	12/03/10 12:15PM CU
Sample Number Sample Description FILL STATION Received Temp: 39 F Iced (Y/N): Y	Samp. D 12/03/10	ate/Time/Temp 0 12:20pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/100 1. col/ml	ml 12/04/10 01:10PM ARD 12/04/10 06:25AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	0.75 mg/1	0.02 mg/1	12/03/10 12:25PM CU

Page 1 of 3

Serial Number: 1598663

Thomas J. Hines, Pre

1205 Industrial Blvd., P.O. Box 514, Southampton, PA 18966-0514 Phone: 215-355-3900 Fax: 215-355-7231 www.qclaboratories.com

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.	P.O. PWSID	No: 6600061155 No:	Inv. No: 1265104
Sample Number Sample Description L3556980-4 ANALYTICAL Received Temp: 39 F Iced (Y/N): Y	Samp. 12/03/	Date/Time/Temp 10 12:19pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml 3 col/ml	1. col/10 1. col/ml	OOml 12/04/10 01:10PM ARD 1 12/04/10 06:25AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	< 0.02 mg/1	0.02 mg/1	12/03/10 12:23PM CU
Sample Number Sample Description ROOM 3 RACK 66 Received Temp: 39 F Iced (Y/N): Y		Date/Time/Temp 10 12:42pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/10 1. col/ml	Oml 12/04/10 01:10PM ARD 12/04/10 06:25AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	0.67 mg/1	0.02 mg/1	12/03/10 12:44PM CU
Sample Number Sample Description ROOM 56 RACK 09405 Received Temp: 39 F Iced (Y/N): Y	Samp. E 12/03/1	Date/Time/Temp 10 12:29pm NA F	Sampled by Customer Sampled
Parameter Method	Result	RLs	Test Date, Time, Analyst
ENVIRONMENTAL MICROBIOLOGY COLIFORM-MF SM 9222B STANDARD PLATE COUNT SM 9215B	<1 col/100ml <1 col/ml	1. col/10 1. col/ml	Oml 12/04/10 01:10PM ARD 12/04/10 06:25AM CAS
FIELD SERVICES CHLORINE RESIDUAL SM 4500CL G	1.18 mg/l	0.02 mg/1	12/03/10 12:31PM CU

L3566980-1:
1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3566980-2:

Page 2 of 3

Serial Number: 1598663

Thomas / Ames Thomas J. Hines, President

Analytical Report

Account No: W05899, CHARLES RIVER LABORATORIES, INC. Project No: W05899, CHARLES RIVER LABORATORIES, INC.

P.O. No: 6600061155 PWSID No:

Inv. No: 1265104

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3566980-3:

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100m1" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

L3566980-6:

- 1. A water supply is considered bacteriologically "SAFE" if no Coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 col/100ml" or "NEG" for the Coliform Test. If your report indicates a positive result "POS" or a value of one (1) or greater then your supply is "UNSAFE FOR DRINKING" contact your local Health Dept. or QC for advice.

- A result of "ND" indicates the concentration of the analyte tested was either not detected or below the RLs.
- Definitions: ND=not detected; NEG=negative; POS=positive; COL=colonies; RLs=laboratory reporting limits; L/A=laboratory accident; TNTC=too numerous to count
- A result marked with "DRY" indicates that the result was calculated and reported on a dry weight basis.
- All analysis, except field tests are conducted in Southampton, PA unless otherwise identified.
- The test"pH lab"is analyzed upon receipt at the laboratory, the result will not be suitable for regulatory purposes.
- The reported results relate only to the samples.
- QC NELAP ID's:PA 09-00131,NJ PA166,FL E87954,NY 11223,CT PH-0768,DE PA-018,KY 90228,MD 206,EPA PA00018.Bioassay:PA 09-03574,NJ PA034,FL E87953,KS E10373,SC 89021001.
- QC STATE ID's:Wind Gap,NJ PA001,PA 48-01334;E RUTHERFORD NJ02015;Vineland NJ06005; Reading PA 06-03543.
- All samples are collected as "grab" samples unless otherwise identified.
- MCL= is the EPA recommended "maximum contaminant level" for a parameter. PLs=customer specific permit limits.
- The test results meet all requirements of NELAC unless otherwise specified.
- The report shall not be reproduced except in full without the written consent of the laboratory.
Regulatory authorities are assessing substantial fines for testing omissions. Please track your sample collections and results on a weekly, monthly, or quarterly basis to ensure compliance. QC's internet program 'LIVE ACCESS' will provide you with real-time access to collection dates and results. Please contact Customer Service for further information on acquiring LIVE ACCESS.

Page 3 of 3

Serial Number: 1598663

Thomas / Ames Thomas J. Hines, President

As Received

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: #1 905 Analytical Lab Grab Water Sample

Semi-Annual

LLI Sample # WW 6036580 LLI Group # 1203845

Account # 02423

Project Name: Semi-Annual

Collected: 07/20/2010 10:55

by EA

Charles River Laboratories

905 Sheehy Dr.

As Received

Horsham PA 19044-1297

Submitted: 07/20/2010 16:00

Reported: 07/29/2010 12:02 Discard: 08/13/2010

1905-

CAT No.	Analysis Name		CAS Number	As Received Result	Method Detection Limit*	Limit of Quantitation	Dilution Pactor
Herbi	cides	SW-846 81	51A	ug/l	ug/l	ug/l	
01856	2,4-D		94-75-7	N.D.	0.16	0.50	1
01856	Dalapon		75-99-0	N.D.	0.25	1.3	1
01856	2,4-DB		94-82-6	N.D.	0.30	1.0	î
01856	Dicamba		1918-00-9	N.D.	0.081	0.30	1
01856	Dinoseb		88-85-7	N.D.	0.10	0.50	1
01856	2,4-DP (Dichlorprop)	120-36-5	N.D.	0.20	0.50	1
01856	MCPA		94-74-6	N.D.	300	1,000	1
01856	MCPP		93-65-2	N.D.	50	200	1
01856	Pentachlorophenol		87-86-5	N.D.	0.060	0.060	î
01856	2,4,5-T		93-76-5	N.D.	0.015	0.050	1
01856	2,4,5-TP		93-72-1	N.D.	0.030	0.050	î
Due	to interfering peaks	on the chrom	atogram, the v			*****	•
comp	ounds represent the	owest report	ing limits att	ainable.			
	cides/PCBs	EPA 608		ug/l	ug/1	ug/l	
00178	Aldrin		309-00-2	N.D.	0.0041	0.019	1
00178	Alpha BHC		319-84-6	N.D.	0.0026	0.0097	1
00178	Beta BHC		319-85-7	N.D.	0.018	0.058	1
00178	Gamma BHC - Lindane		58-89-9	N.D.	0.0044	0.0097	1
00178	Chlordane		57-74-9	N.D.	0.068	0.48	1
00178	p,p-DDD		72-54-8	N.D.	0.0039	0.019	1
00178	p,p-DDE		72-55-9	N.D.	0.0048	0.019	1
00178	p,p-DDT		50-29-3	N.D.	0.011	0.029	1
00178 00178	Delta BHC Dieldrin		319-86-8	N.D.	0.0041	0.0097	1
00178	Endosulfan I		60-57-1	N.D.	0.0039	0.019	1
00178	Endosulfan II		959-98-8	N.D.	0.0029	0.0097	1
00178	Endosulfan Sulfate		33213-65-9 1031-07-8	N.D. N.D.	0.0039	0.019	1
00178	Endrin		72-20-8	N.D.	0.0048 0.0039	0.019	1
00178	Endrin Aldehyde		7421-93-4	N.D.		0.019	1
00178	Heptachlor		76-44-8	N.D.	0.019 0.0039	0.097 0.0097	1
00178	Heptachlor Epoxide		1024-57-3	N.D.	0.0039	0.0097	1
00178	PCB-1016		12674-11-2	N.D.	0.0023	0.48	1
00178	PCB-1221		11104-28-2	N.D.	0.15	0.48	1
00178	PCB-1232		11141-16-5	N.D.	0.14	0.48	1
00178	PCB-1242		53469-21-9	N.D.	0.097	0.48	1
00178	PCB-1248		12672-29-6	N.D.	0.097	0.48	î
00178	PCB-1254		11097-69-1	N.D.	0.097	0.48	î
00178	PCB-1260		11096-82-5	N.D.	0.097	0.48	1
00178	Toxaphene		8001-35-2	N.D.	0.29	0.97	1
Metal	ş	EPA 200.7	rev 4.4	mg/l	mg/l	mg/1	
07035	Arsenic		7440-38-2	N.D.	0.0098	0.0200	1
07046	Barium		7440-39-3	N.D.	0.00060	0.0050	1
07049	Cadmium		7440-43-9	N.D.	0.0020	0.0050	î
07051	Chromium		7440-47-3	N,D.	0.0034	0.0150	ĩ
07055	Lead		7439-92-1	N.D.	0.0069	0.0150	1
07036	Selenium		7782-49-2	N.D.	0.0089	0.0200	1
07066	Silver		7440-22-4	N.D.	0.0023	0.0050	1

*=This limit was used in the evaluation of the final result

EXACT COPY OMW INNATO

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 3

Sample Description: #1 905 Analytical Lab Grab Water Sample

Semi-Annual

LLI Sample # WW 6036580 LLI Group # 1203845

Account # 02423

Project Name: Semi-Annual

Collected: 07/20/2010 10:55

by EA

Charles River Laboratories

905 Sheehy Dr.

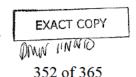
Horsham PA 19044-1297

Submitted: 07/20/2010 16:00 Reported: 07/29/2010 12:02 Discard: 08/13/2010

1905-

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Metal	g	EPA	200.7	rev 4.4	mg/l	mg/l	mg/l	
07072	Zinc			7440-66-6	N.D.	0.0081	0.0200	1
		EPA	245.1	rev 3	mg/l	mg/l	mg/l	
0.0259	Mercury			7439-97-6	N.D.	0.000056	0.00020	1
Wet C	hemistry	EPA	300.0		mg/l	mg/l	mg/l	
01505	Bromide			24959-67-9	N.D.	2.0	2.5	5
00224	Chloride			16887-00-6	N.D.	1.0	2.0	5
01504	Fluoride			16984-48-8	N.D.	0.40	0.50	5
00368	Nitrate Nitrogen			14797~55-8	N.D.	0.25	0.50	5
01506	Nitrite Nitrogen			14797-65-0	N.D.	0.40	0.50	5
00228	Sulfate			14808-79-8	N.D.	1.5	5.0	5
		EPA	365.3		mg/l	mg/1	mg/l	
00226	Ortho-Phosphate as	p		7723-14-0	N.D.	0.030	0.090	1

General Sample Comments


PA DBP Lab Certification ID 36-00037, Expiration Date: 1/31/11

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

Approved Mos Augoro

Laboratory Sample Analysis Record CAT Analysis Name Method Trial# Batch# Analysis Analyst Dilution Date and Time Factor 01856 Herbicides in Water SW-846 8151A 1 102040037A 07/26/2010 22:54 John W Perkins Pesticides/PCB's in Water 00178 EPA 608 102030016A 07/23/2010 18:13 Lisa A Reinert 10241 Method 608 Water Extraction EPA 608 1 102030016A 07/23/2010 02:40 Sherry L Morrow 00816 Water Sample Herbicide SW-846 8151A 1 102040037A 07/23/2010 02:30 Karen L Beyer 1 Extract 07035 EPA 200.7 rev 4.4 1 102025716002 07/23/2010 Tara L Snyder Arsenic 03:52 EPA 200.7 rev 4.4 Barium 07/23/2010 03:52 Tara L Snyder Tara L Snyder 07049 Cadmium EPA 200.7 rev 4.4 102025716002 07/23/2010 07051 Chromium EPA 200.7 rev 4.4 102025716002 07/23/2010 03:52 Tara L Snyder EPA 200.7 rev 4.4 102025716002 07055 Lead 07/23/2010 03:52 Tara L Snyder 1 07036 Selenium EPA 200.7 rev 4.4 102025716002 07/23/2010 Tara L Snyder 03:52 Silver 07066 EPA 200.7 rev 4.4 102025716002 07/24/2010 01:34 John W Yanzuk II EPA 200.7 rev 4.4 07072 Zinc 102025716002 07/23/2010 03:52 Tara L Snyder 00259 Mercury EPA 245.1 rev 3 102025714001 07/22/2010 06:52 Damary Valentin EPA 600 ICP Digest (tot Denise K Conners EPA 200.7 rev 4.4 05716 102025716002 07/22/2010 09:05 rec) 05714 PW/WW Hg Digest EPA 245.1 rev 3 102025714001 07/21/2010 15:15 Nelli S Markaryan 01505 Bromide EPA 300.0 10202196601A 07/21/2010 18:56 Ashley M Adams 00224 Chloride EPA 300.0 10202196601A 07/21/2010 18:56 Ashley M Adams 5

*aThis limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.fancasterlabs.com

Page 3 of 3

Sample Description: #1 905 Analytical Lab Grab Water Sample

Semi-Annual

LLI Sample # WW 6036580 LLI Group # 1203845 Account # 02423

Account

Project Name: Semi-Annual

Collected: 07/20/2010 10:55

by EA

Charles River Laboratories

905 Sheehy Dr.

Horsham PA 19044-1297

Submitted: 07/20/2010 16:00 Reported: 07/29/2010 12:02 Discard: 08/13/2010

1905-

Laboratory Sample Analysis Record

		-	_			
Analysis Name	Method	Trial#	Batch#	Analysis	Analyst	Dilution
				Date and Time		Factor
Fluoride	EPA 300.0	1	10202196601A	07/21/2010 18	:56 Ashley M Adams	5
Nitrate Nitrogen	EPA 300.0	1	10202196601A	07/21/2010 18	:56 Ashley M Adams	5
Nitrite Nitrogen	EPA 300.0	1	10202196601A	07/21/2010 18	:56 Ashley M Adams	5
Sulfate	EPA 300.0	1	10202196601A	07/21/2010 18	:56 Ashley M Adams	5
Ortho-Phosphate as P	EPA 365.3	1	10202022601A	07/21/2010 00	:20 Daniel S Smith	1
	Pluoride Nitrate Nitrogen Nitrite Nitrogen Sulfate	Fluoride EPA 300.0 Nitrate Nitrogen EPA 300.0 Nitrite Nitrogen EPA 300.0 Sulfate EPA 300.0	Fluoride	Fluoride EPA 300.0 1 10202196601A Nitrate Nitrogen EPA 300.0 1 10202196601A Nitrite Nitrogen EPA 300.0 1 10202196601A Sulfate EPA 300.0 1 10202196601A	Fluoride EPA 300.0 1 10202196601A 07/21/2010 18 Nitrate Nitrogen EPA 300.0 1 10202196601A 07/21/2010 18 Nitrite Nitrogen EPA 300.0 1 10202196601A 07/21/2010 18 Sulfate EPA 300.0 1 10202196601A 07/21/2010 18	Date and Time Fluoride EPA 300.0 1 10202196601A 07/21/2010 18:56 Ashley M Adams Nitrate Nitrogen EPA 300.0 1 10202196601A 07/21/2010 18:56 Ashley M Adams Nitrite Nitrogen EPA 300.0 1 10202196601A 07/21/2010 18:56 Ashley M Adams Sulfate EPA 300.0 1 10202196601A 07/21/2010 18:56 Ashley M Adams Ashley M Adams Original Properties Original Pro

Approved
MODE Auggoro

As Received

Limit of

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 • 717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 3

Sample Description: #2 Formulation Lab (905) Grab Water Sample

Semi-Annual

LLI Sample # WW 6036579 LLI Group # 1203845

Account # 02423

Project Name: Semi-Annual

Collected: 07/20/2010 10:45

by EA

Charles River Laboratories

905 Sheehy Dr.

As Received

Method

Horsham PA 19044-1297

Submitted: 07/20/2010 16:00

Reported: 07/29/2010 12:02

Discard: 08/13/2010

2FRM-

CAT No.	Analysis Name	CAS Number	As Received Result	Method Detection Limit*	Limit of Quantitation	Dilution Factor
Herbi	cides SW-8	46 8151A	ug/l	ug/l	ug/l	
01856	2,4-D	94-75-7	N.D.	0.15	0.48	1
01856	Dalapon	75-99-0	N.D.	0.24	1.2	1
01856	2,4-DB	94-82-6	N.D.	0.29	0.97	1
01856	Dicamba	1918-00-9	N.D.	0.077	0.29	1
01856	Dinoseb	88-85-7	N.D.	0.097	0.48	1
01856	2,4-DP (Dichlorprop)	120-36-5	N.D.	0.15	0.48	1
01856	MCPA	94-74-6	N.D.	290	970	1
01856	MCPP	93-65-2	N.D.	180	190	1
01856	Pentachlorophenol	87-86-5	N.D.	0.040	0.048	1
01856	2,4,5-T	93-76-5	N.D.	0.014	0.048	1
01856	2,4,5-TP	93-72-1	N.D.	0.030	0.048	1
	to interfering peaks on th			for various		
. comp	ounds represent the lowest	reporting limits att	ainable.			
Pesti	cides/PCBs EPA	608	ug/l	ug/l	ug/l	
00178	Aldrin	309-00-2	N.D.	0.0041	0.020	1
00178	Alpha BHC	319-84-6	N.D.	0.0026	0.0098	1
00178	Beta BHC	319-85-7	N.D.	0.018	0.059	1
00178	Gamma BHC - Lindane	58-89-9	N,D,	0.0045	0.0098	1
00178	Chlordane	57-74-9	N.D.	0.068	0.49	1
00178	p,p-DDD	72-54-8	N.D.	0.0039	0.020	1
00178	p,p-DDE	72-55-9	N.D.	0.0049	0.020	1
00178	p,p-DDT	50-29-3	N.D.	0.011	0.029	1
00178	Delta BHC	319-86-8	N.D.	0.0041	0.0098	1
00178	Dieldrin	60-57-1	N.D.	0.0039	0.020	1
00178	Endosulfan I	959-98-8	N.D.	0.0029	0.0098	1
00178	Endosulfan II	33213-65-9	N.D.	0.0039	0.020	1
00178	Endosulfan Sulfate	1031-07-8	N.D.	0.0049	0.020	1
00178	Endrin	72-20-8	N.D.	0.0039	0.020	1
00178	Endrin Aldehyde	7421-93-4	N.D.	0.020	0.098	1
00178	Heptachlor	76-44-8	N.D.	0.0039	0.0098	1
00178	Heptachlor Epoxide	1024-57-3	N.D.	0.0029	0.0098	1
00178 00178	PCB-1016 PCB-1221	12674-11-2 11104-28-2	N.D. N.D.	0.098 0.16	0.49 0.49	1
00178	PCB-1221	11141-16-5	N.D.	0.14	0.49	1
00178	PCB-1232 PCB-1242	53469-21-9	N.D.	0.098	0.49	1
00178	PCB-1242	12672-29-6	N.D.	0.098	0.49	1
00178	PCB-1254	11097-69-1	N.D.	0.098	0.49	i
00178	PCB-1260	11096-82-5	N.D.	0.098	0.49	1
00178	Toxaphene	8001-35-2	N.D.	0.29	0.98	1
			4-	4-		
Metal		200.7 rev 4.4	mg/l	mg/l	mg/l	
07035	Arsenic	7440-38-2	N.D.	0.0098	0.0200	1
07046	Barium	7440-39-3	N.D.	0.00060	0.0050	1
07049	Cadmium	7440-43-9	N.D.	0.0020	0.0050	1
07051	Chromium Lead	7440-47-3	N.D.	0.0034	0.0150	1
07055 07036	Selenium	7439-92-1	N.D.	0.0069	0.0150	1
07066	Silver	7782-49-2 7440-22-4	N.D. N.D.	0.0089 0.0023	0.0200 0.0050	1
07000	STIVEL	7440-22-4	и	0.0023	0.0030	

*=This limit was used in the evaluation of the final result

EXACT COPY Mr. unaro 354 of 365

Approved 06 Augusto 6

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 +717-656-2300 Fax: 717-656-2681 + www.fancasterlabs.com

Page 2 of 3

Sample Description: #2 Formulation Lab (905) Grab Water Sample

Semi-Annual

LLI Sample # WW 6036579 LLI Group # 1203845 Account # 02423

Project Name: Semi-Annual

Collected: 07/20/2010 10:45

by EA

Charles River Laboratories

905 Sheehy Dr.

Horsham PA 19044-1297

Submitted: 07/20/2010 16:00 Reported: 07/29/2010 12:02

Discard: 08/13/2010

2FRM-

CAT No.	Analysis Name			CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Meta]	.s	EPA	200.7	rev 4.4	mg/l	mg/1	mg/l	
07072	Zinc			7440-66-6	N.D.	0.0081	0.0200	1
		EPA	245.1	rev 3	mg/l	mg/l	mg/1	
00259	Mercury			7439-97-6	N.D.	0.000056	0.00020	1
Wet (Chemistry	EPA	300.0		mg/l	mg/l	mg/l	
01505	Bromide			24959-67-9	N.D.	2.0	2.5	5
00224	Chloride			16887-00-6	N.D.	1.0	2.0	5
01504	Fluoride			16984-48-8	N.D.	0.40	0.50	5
00368	Nitrate Nitrogen			14797-55-8	N.D.	0.25	0.50	5
01506	Nitrite Nitrogen			14797-65-0	N.D.	0.40	0.50	5
00228	Sulfate			14808-79-8	N.D.	1.5	5.0	5
		EPA	365.3		mg/l	mg/l	mg/l	
00226	Ortho-Phosphate as	P		7723-14-0	N.D.	0.030	0.090	1

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/11

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Labora	tory Sa	ample Analysi	is Record		
CAT	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
01856	Herbicides in Water	SW-846 8151A	1	102040037A	07/26/2010 22:26	John W Perkins	1
00178	Pesticides/PCB's in Water	BPA 608	1	102030016A	07/23/2010 18:01	Lisa A Reinert	1
10241	Method 608 Water Extraction	EPA 608	1	102030016A	07/23/2010 02:40	Sherry L Morrow	1
00816	Water Sample Herbicide	SW-846 8151A	1	102040037A	07/23/2010 02:30	Karen L Beyer	1
07035	Arsenic	EPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
07046	Barium	EPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
07049	Cadmium	EPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
07051	Chromium	BPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
07055	Lead	EPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
07036	Selenium	EPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
07066	Silver	EPA 200.7 rev	4.4 1	102025716002	07/24/2010 01:31	John W Yanzuk II	1
07072	Zinc	EPA 200.7 rev	4.4 1	102025716002	07/23/2010 03:42	Tara L Snyder	1
00259	Mercury	EPA 245.1 rev	3 1	102025714001	07/22/2010 06:48	Damary Valentin	1
05716		EPA 200.7 rev	4.4 1	102025716002	07/22/2010 09:05	Denise K Conners	1
	rec)						
05714	PW/WW Hg Digest	BPA 245.1 rev	3 1	102025714001	07/21/2010 15:15	Nelli S Markaryan	. 1
01505	Bromide	EPA 300.0	1	10202196601A	07/21/2010 18:38	Ashley M Adams	5
00224	Chloride	EPA 300.0	1	10202196601A	07/21/2010 18:38	Ashley M Adams	5
							A

*=This limit was used in the evaluation of the final result

EXACT COPY

ONW (IN INIO

355 of 365

A porced margher 06 Amplo10

2425 New Holland Pike, PO Box 12425. Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 3 of 3

Sample Description: #2 Formulation Lab (905) Grab Water Sample

Semi-Annual

LLI Sample # WW 6036579 LLI Group # 1203845 Account # 02423

Account

Project Name: Semi-Annual

Collected: 07/20/2010 10:45

by EA

Charles River Laboratories

905 Sheehy Dr.

Horsham PA 19044-1297

Submitted: 07/20/2010 16:00 Reported: 07/29/2010 12:02

Discard: 08/13/2010

2FRM-

		Labor	atory Sa	ample Analysi	is Record			
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution Factor
01504	Fluoride	EPA 300.0	1	10202196601A	07/21/2010	18:38	Ashley M Adams	5
00368	Nitrate Nitrogen	EPA 300.0	1	10202196601A	07/21/2010	18:38	Ashley M Adams	5
01506	Nitrite Nitrogen	EPA 300.0	1	10202196601A	07/21/2010	18:38	Ashley M Adams	5
00228	Sulfate	EPA 300.0	1	10202196601A	07/21/2010	18:38	Ashley M Adams	5
00226	Ortho-Phosphate as P	EPA 365.3	1	10202022601A	07/21/2010	00:20	Daniel S Smith	1

Approved Approved to 6 Augrosio

Bedding Analysis

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: Bedding Sample Lot# 051310

2307 grams

LLI Sample # G5 6008909

LLI Group # 1199196 Account # 02423

Project Name: Analysis of Bedding

Collected: 06/15/2010

Charles River Laboratories

905 Sheehy Dr.

Horsham PA 19044-1297

he Pecelyad

Submitted: 06/16/2010 17:00 Reported: 07/01/2010 16:41

Discard: 07/16/2010

51310

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Herbi	cides	SW-846 8	3151A	ug/kg	ug/kg	ug/kg	
01863	2,4~D		94-75-7	N.D.	120	360	10
01863	Dinoseb		88-85-7	N.D.	.80	240	10
01863	2,4,5-T		93-76-5	N.D.	8.2	17	10
01863	2,4,5-TP		93-72-1	10 J	7.5	17	10
Due	to the nature of the	sample ext	ract matrix, a di	ilution was used	for		
the	analysis. The report	ing limits	were raised acco	ordingly.	,		
Pesti	cides/PCBs	SW-846 8	3081A	ug/kg	ug/kg	ug/kg	
10738	Aldrin		309-00-2	N.D.	0.51	2.5	1
10738	Alpha BHC		319-84-6	N.D.	0.51	2.5	î
10738	Beta BHC		319-85-7	N.D.	2.9	5.7	î
10738	Gamma BHC - Lindane		58-89-9	N.D.	0.51	2.5	ī
10738	Chlordane		57-74-9	N.D.	12	51	î
10738	p,p-DDD		72-54-8	N.D.	0.99	5.1	i
10738	p,p-DDE		72-55-9	N.D.	0.99	5.1	î
10738	p,p-DDT		50-29-3	N.D.	0.99	5.1	î
10738	Delta BHC		319-86-8	N.D.	1.4	2.5	1
10738	Dieldrin		60-57-1	N.D.	0.99	5.1	1
10738	Endosulfan I		959-98-8	N.D.	0.66	2.5	î l
10738	Endosulfan II		33213-65-9	N.D.	0.99	5.1	1 1
10738	Endosulfan Sulfate		1031-07-8	N.D.	0.99	5.1	1 2
10738	Endrin		72-20-8	N.D.	0.99	5.1	1 0 3
10738	Endrin Aldehyde		7421-93-4	N.D.	0.99	5.1	EXACT COPY
10738	Heptachlor		76-44-8	N.D.	0.51	2.5	ile
10738	Heptachlor Epoxide		1024-57-3	N.D.	0.51	2.5	EXACT
10738	Methoxychlor		72-43-5	N.D.	5.1	25	i \$ \forall 2
10738	Toxaphene		8001-35-2	N.D.	33	99	i X \geq
Due	to the nature of the	sample mat				33	2 1 2
for	analysis. The report	ing limits	were raised acco	ordingly.			
	cides/PCBs	SW-846 8	082	ug/kg	ug/kg	ug/kg	_
10885	PCB-1016		12674-11-2	N.D.	9.9	51	1
10885	PCB-1221		11104-28-2	N.D.	9.9	51	1
10885	PCB-1232		11141-16-5	N.D.	9.9	51	i (
10885	PCB-1242		53469-21-9	N.D.	9.9	51	ī .λ
10885	PCB-1248		12672-29-6	N.D.	9.9	51	1 2
10885	PCB-1254		11097-69-1	N.D.	9.9	51	
10885	PCB-1260		11096-82-5	N.D.	9.9	51	1 N K ARD 1
Metal	g	SW-846 6	010B	mg/kg	mg/kg	mg/kg	1 Ochugar
06935	Arsenic		7440-38-2	N.D.	0.941	1.98	1 months
06946	Barium		7440-39-3	1.14	0.0396	0.495	1 00 W
06949	Cadmium		7440-43-9	N.D.	0.139	0.495	1
06951	Chromium		7440-47-3	N.D.	0.584	1.49	1
06955	Lead		7439-92-1	N.D.	0.594	1.49	1
06936	Selenium		7782-49-2	N.D.	0.970	1.98	1
06966	Silver		7440-22-4	N.D.	0.178	0.495	1
		SW-846 7	471A	mg/kg	mg/kg	mg/kg	

*=This limit was used in the evaluation of the final result

Result is below EPA MCL of 50mg/L and bedding is not intended for ingestion which limits exposure, was referred

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax:717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: Bedding Sample Lot# 051310

2307 grams

LLI Sample # G5 6008909 LLI Group # 1199196

Account

02423

Project Name: Analysis of Bedding

Collected: 06/15/2010

Charles River Laboratories

905 Sheehy Dr.

Horsham PA 19044-1297

Submitted: 06/16/2010 17:00 Reported: 07/01/2010 16:41

Discard: 07/16/2010

51310

CAT

No.

Analysis Name

CAS Number

As Received Result

As Received Method Detection Limit* As Received Quantitation

Dilution

Metals

SW-846 7471A 7439-97-6 mg/kg N.D.

mg/kg 0.0111 mg/kg

00159 Mercury

Approved
NOS Aug 2010

General Sample Comments

PA DEP Lab Certification ID 36-00037, Expiration Date: 1/31/11

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

			Labo	ratory Sa	mple Analys	is Record			
	AT To.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Ti	me	Analyst	Dilution
. 0	1863	Appendix IX Herbicides in Soil	SW-846 8151A	1	101720010A	06/28/2010	11:55	John W Perkins	10
1	.0738	Pesticides in Soil (microwave)	SW-846 8081A	1	101700009A	06/29/2010	12:22	Jamie L Brillhart	1 F
1	0885	PCBs w/ Pesticides (microwave)	SW-846 8082	1	101690000A	06/21/2010	14:13	Lindsey K Lafferty	1 ,
1	0497	PCB Microwave Soil Extraction	SW-846 3546	1	101690000A	06/18/2010	12:30	Wanda F Oswald	1
1	0496	PPL Pest. Microwave Extraction	SW-846 3546	2	101700009A	06/21/2010	10:30	Olivia Arosemena	1
0	4181	Herbicide Soil Extraction	SW-846 3550B 846 8151A	/SW- 1	101720010A	06/22/2010	01:00	Sherry L Morrow	1
0	6935	Arsenic	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1
0	6946	Barium	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1 -
:0	6949	Cadmium	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1
0	6951	Chromium	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1 .
0	6955	Lead	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1
0	6936	Selenium	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1
:0	6966	Silver	SW-846 6010B	1	101685708002	06/22/2010	19:04	John P Hook	1
0	0159	Mercury	SW-846 7471A	ī	101685711002	06/18/2010	11:54	Damary Valentin	1
	5708	SW SW846 ICP Digest	SW-846 3050B	î	101685708002	06/17/2010	20:22	Annamaria Stipkovits	i
0	5711	SW SW846 Hg Digest	SW-846 7471A modified	1	101685711002	06/18/2010	01:05	Annamaria Stipkovits	1

*=This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 1 of 2

Sample Description: Bedding Sample Lot# 092210

1,912

LLI Sample # G5 6103632 LLI Group # 1214913

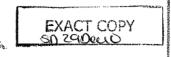
Account # 02423

Project Name: Analysis of Bedding

Collected: 10/04/2010

Charles River Laboratories

905 Sheehy Dr.


Horsham PA 19044-1297

Submitted: 10/05/2010 17:45 Reported: 10/14/2010 16:13 Discard: 10/29/2010

BED22

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Herbi	cides	SW-846	8151A	ug/kg	ug/kg	ug/kg	
10401	2,4-D		94-75-7	N.D.	12	36	1
10401	2,4,5-TP		93-72-1	N.D.	0.75	1.7	1
Pesti	cides/PCBs	SW-846	8081A	ug/kg	ug/kg	ug/kg	
10738	Aldrin		309-00-2	N.D.	0.51	2.5	1
10738	Alpha BHC		319-84-6	N.D.	0.51	2.5	1
10738	Beta BHC		319-85-7	N.D.	2.9	5.7	1
10738	Gamma BHC - Lindane		58-89-9	N.D.	0.51	2.5	1
10738			57-74-9	N.D.	12	51	1
10738	p,p~DDD		72-54-8	N.D.	0.99	5.1	1
10738			72-55-9	N.D.	0.99	5.1	1
10738	p,p-DDT		50-29-3	N.D.	0.99	5.1	1
10738	Delta BHC		319-86-8	N.D.	1.4	2.5	1
	Dieldrin		60-57-1	N.D.	0.99	5.1	1
10738	Endosulfan I		959-98-8	N.D.	0.66	2.5	1
10738	Endosulfan II		33213-65-9	N.D.	0.99	5.1	1
	Endosulfan Sulfate		1031-07-8	N.D.	0.99	5.1	1
10738			72-20-8	N.D.	0.99	5.1	1
	Endrin Aldehyde		7421-93-4	N.D.	0.99	5.1	1
	Heptachlor		76-44-8	N.D.	0.51	2.5	1
	Heptachlor Epoxide		1024-57-3	N.D.	0.51	2.5	1
10738			72-43-5	N.D.	5.1	25	٠.٠٠
10738	Toxaphene		8001-35-2	N.D.	33	99	1 7000
vario samp attr	sample was injected nous analytes in the cole were outside the a ibuted to the sample orting limits were rai	alibratio cceptance matrix an	n check standard criteria. There d the data is rep	injected after to fore, this effect orted.	che et is		Approved Approved MUSTELACIO
Pestio	ides/PCBs	SW-846	8082	ug/kg	ug/kg	ug/kg	1700
	PCB-1016		12674-11-2	N.D.	20	100	1
	PCB-1221		11104-28-2	N.D.	20	100	î
	PCB-1232		11141-16-5	N.D.	20	100	î
	PCB-1242		53469-21-9	N.D.	20	100	ī
10885	PCB-1248		12672-29-6	N.D.	20	100	î
10885	PCB-1254		11097-69-1	N.D.	20	100	1
10885	PCB-1260		11096-82-5	N.D.	20	100	1
Repor	rting limits were rai	sed due to	o interference fro	om the sample ma	trix.		
Metals	1	SW-846	6010B	mg/kg	mg/kg	mg/kg	
06935	Arsenic		7440-38-2	N.D.	0.950	2.00	1
06946	Barium		7440-39-3	0.626	0.0400	0.500	1
06949			7440-43-9	N.D.	0.140	0.500	1
06951	Chromium		7440-47-3	N.D.	0.590	1.50	1
06955	Lead		7439-92-1	N.D.	0.600	1.50	1
06936	Selenium		7782-49-2	N.D.	0.980	2.00	1
76966	Silver		7440-22-4	N.D.	0.180	0.500	1

*=This limit was used in the evaluation of the final result

2425 New Holland Pike, PO Box 12425, Lancaster, PA 17605-2425 •717-656-2300 Fax: 717-656-2681 • www.lancasterlabs.com

Page 2 of 2

Sample Description: Bedding Sample Lot# 092210

1,912

LLI Sample # G5 6103632 LLI Group # 1214913

Account # 02423

Project Name: Analysis of Bedding

Collected: 10/04/2010

Charles River Laboratories

905 Sheehy Dr.

Horsham PA 19044-1297

Submitted: 10/05/2010 17:45 Reported: 10/14/2010 16:13

Discard: 10/29/2010

BED22

CAT No.	Analysis Name		CAS Number	As Received Result	As Received Method Detection Limit*	As Received Limit of Quantitation	Dilution Factor
Metal	3	SW-846	7471A	mg/kg	mg/kg	mg/kg	
00159	Mercury		7439-97-6	N.D.	0.0028	0.0985	1

General Sample Comments

PA DBP Lab Certification ID 36-00037, Expiration Date: 1/31/11

All QC is compliant unless otherwise noted. Please refer to the Quality Control Summary for overall QC performance data and associated samples.

		Laborat	cory Sa	ample Analysi	s Record		
CAT No.	Analysis Name	Method	Trial#	Batch#	Analysis Date and Time	Analyst	Dilution Factor
10401	Herbicide soils 8151A Master	SW-846 8151A	1	102850009A	10/14/2010 00:33	John W Perkins	1
10738	Pesticides in Soil (microwave)	SW-846 8081A	1	102810005A	10/12/2010 09:17	Jamie L Brillhart	1
10885	PCBs w/ Pesticides (microwave)	SW-846 8082	1	102820003A	10/13/2010 11:23	Lindsey K Laffert	y 1
10497	PCB Microwave Soil Extraction	SW-846 3546	1	102820003A	10/10/2010 14:00	Wanda F Oswald	1
10496	PPL Pest. Microwave Extraction	SW-846 3546	1	102810005A	10/08/2010 18:45	Sally L Appleyard	1
04181	Herbicide Soil Extraction	SW-846 3550B/SW- 846 8151A	. 1	102850009A	10/13/2010 01:30	Sherry L Morrow	1
06935	Arsenic	SW-846 6010B	1	102795708002	10/12/2010 17:22	Eric L Eby	1
06946	Barium	SW-846 6010B	1	102795708002	10/12/2010 17:22	Eric L Eby	1
06949	Cadmium	SW-846 6010B	1	102795708002	10/12/2010 17:22	Eric L Eby	1
06951	Chromium	SW-846 6010B	1	102795708002	10/12/2010 17:22	Bric L Bby	1
06955	Lead	SW-846 6010B	1	102795708002	10/12/2010 17:22	Eric L Bby	1
06936	Selenium	SW-846 6010B	1	102795708002	10/12/2010 17:22	Eric L Eby	1
06966	Silver	SW-846 6010B	1	102795708002	10/12/2010 17:22	Eric L Eby	1
00159	Mercury	SW-846 7471A	1	102795711001	10/06/2010 18:27	Nelli S Markaryan	1
05708	SW SW846 ICP Digest	SW-846 3050B	1	102795708002	10/06/2010 13:25	James L Mertz	1
05711	SW SW846 Hg Digest	SW-846 7471A modified	1	102795711001	10/06/2010 14:44	James L Mertz	1

*=This limit was used in the evaluation of the final result

EXACT COPY SO 29,0000

APPENDIX 7 - HEALTH ANALYSIS REPORTS

Printed: Tuesday, September 28, 2010 at 16:0

Charles River Research Animal Diagnostic Services

251 Ballardvale Street, Wilmington, MA 01887 USA

Tel: 800-338-9680 Fax: 978-658-7698

Sponsor: Charles River Preclin Srvs Pennsylvania

Accession #: 2010-042108

Diagnostic Summary Report

905 Sheehy Drive

Attn: Dena Lebo

Service

Infectious Disease PCR

Horsham, PA 19044 USA

Received:

24 Sep 2010

Approved:

28 Sep 2010, 14:54

Bill Method:

LC2HERGENICASSISTEMBRICASSISTE

No PO Required

Test Specimen:

2000504-5 pooled feces Mouse

ASSESSMENT OF THE REPORT				
Sample Set	Service (# Tested)	Profile	Assay	Tested + +/- ?
#1	Infectious Disease PCR (2)	All Results Negative	- · ·	

+ = Positive, +/- = Equivocal, ? = Indeterminate

Service Approvals	
Approved By*	Date
DiAnne L. Pcck	28 Sep 2010, 14:54

To assure the SPF status of your research animal colonies, it is essential that you understand the sources, pathobiology, diagnosis and control of pathogens and other adventitious infectious agents that may cause research interference. We have summarized this important information in infectious agent Technical Sheets, which you can view by visiting https://www.criver.com/info/disease_sheets.

down helm 28 Sept 2010

^{*}This report has been electronically signed by laboratory personnel. The name of the individual who appeared these results appears in the header of this service report. All services are performed in accordance with and subject to General Ferms and Conditions of Sale found in the Charles River Laboratorius-Research Models and Services catalogue and on the back of invoices.

Printed: Tuesday, September 28, 2010 at 16:0

Charles River Research Animal Diagnostic Services

251 Ballardvale Street, Wilmington, MA 01887

Tel: 800-338-9680 Fax: 978-658-7c

Sponsor: Charles River Preclin Srvs Pennsylvania

Accession #: 2010-042108

Product: Not Indicated

Test Specimen: 2000504-5 pooled feces Mouse

Received: 24 Sep 2010

Molecular Diagnostics Infectious Disease PCR Results Report

Department Review:

Approved by DiAnne L. Peck, 28 Sep 2010, 14:54*

MVM/MBV PGR

BARANTA BARANTA		
Sample /	1	. ∠
Cotle		100
	10, 20, 30, 40, 5	gger over the second
MVM/MPV PCR		

Remarks: - = Negative; I = Inhibition, +/- = Equivocal; + = Positive.

Sample Suitability/Detection of PCR Inhibition:

Sample DNA or RNA is spiked with a low-copy number of a exogenous DNA or RNA template respectively. A spike template-specific PCR assay is used to test for the spike template for the purpose of determining the presence of PCR inhibitors. The RNA spike control is also used to evaluate the reverse-transcription of RNA. Amplification of spike template indicates that there is no detectable inhibition and the assay is valid.

Sample IDs: 1-(1, 10, 20, 30, 40, 50, 60, 70, 80, 90); 2-(100). DLP 28SEP2010

Deva hela 28 Sept 2010

^{*}This report has been electronically signed by laboratory personnel. The name of the individual who approved these results appears in the header of this service report.

Molecular diagnostic testing for animals.

Assay Results Report 11011303

☐ Fax to:

☑ E-mail to: alan.hoberman@crl.com

Cc to: dena.lebo@crl.com

☐ Hard copy to:

Date results transmitted: 17jan11

Client: Charles River Preclinical Services - PA	Client #: 607311
Contact name: Alan Hoberman	PO #: 6600083204
Date samples received: 13jan11	

Initials _____

Page 1 of 1

Client sample ID	Zoologix accession ID	Sample type	Assay	Assay result
20005045/#8314	1101130088	Feces	B0042	Negative
20005045/#8316	1101130089	Feces	B0042	Negative
20005045/#8328	1101130090	Feces	B0042	Negative
20005045/#8333	1101130091	Feces	B0042	Negative
20005045/#8343	1101130092	Feces	B0042	Negative
20005045/#8344	1101130093	Feces	B0042	Negative
20005045/#8346	1101130094	Feces	B0042	Negative
20005045/#8347	1101130095	Feces	B0042	Negative
20005045/#8348	1101130096	Feces	B0042	Negative
20005045/#8387	1101130097	Feces	B0042	Negative
20005045/#8388	1101130098	Feces	B0042	Negative

Assay descriptions and notes

Assay B0042: Ultrasensitive qualitative detection of Clostridium perfringens by real time PCR

Zoologix has verified the performance characteristics of these tests. However, diagnosis and management of the animal patient should not rely solely upon the results of these tests, as unusual genetic variations of the pathogen can affect results. Correlation with other clinical data is recommended. Specimens will be held for six months by Zoologix to facilitate followup testing, after which time specimens will be disposed of at the discretion of Zoologix unless otherwise directed by client.

Zoologix, Inc. Phone 818-717-8880 9811 Owensmouth Avenue, Suite 4 www.zoologix.com

Chatsworth CA 91311 USA Fax 818-717-8881